Chronic regional impairments of the lymphatic circulation often lead to striking architectural abnormalities in the lymphedematous tissues. Lymphedema is a common, disabling disease that currently lacks a cure. Vascular endothelial growth factors C and D mediate lymphangiogenesis through the VEGFR-3 receptor on lymphatic endothelia. The purpose of this study was to investigate the therapeutic potential for lymphangiogenesis with VEGF-C. We developed a rabbit ear model to simulate human chronic postsurgical lymphatic insufficiency. Successful, sustained surgical ablation of the ear lymphatics was confirmed by water displacement volumetry. After complete healing, the experimental animals (n=8) received a single, s.c. 100 microg dose of VEGF-C in the operated ear; controls (n=8) received normal saline. Radionuclide lymphoscintigraphy was performed to quantitate lymphatic function. Immunohistochemistry (IHC) was performed 7-8 days following treatment. After VEGF-C, there was a quantifiable amelioration of lymphatic function. IHC confirmed a significant increase in lymphatic vascularity, along with reversal of the intense tissue hypercellularity of untreated lymphedema. This study confirms the capacity of a single dose of VEGF-C to induce therapeutic lymphangiogenesis in acquired lymphedema. In addition to improving lymphatic function and vascularity, VEGF-C can apparently reverse the abnormalities in tissue architecture that accompany chronic lymphatic insufficiency.
Lymphedema is the term commonly employed to describe the spectrum of pathological states that arise as a consequence of functional lymphatic insufficiency. These human disease entities currently lack an effective cure. Satisfactory therapeutic strategies for both primary and secondary lymphedema will require additional insight into the complex cellular mechanisms and responses that comprise both normal lymphatic function and its regional derangement in states of pathologic dysfunction. Such insights must, initially, be derived from suitable animal models of the chronic human disease process. Historically, efforts to replicate the untreated disease of human lymphedema in animals, through surgery, irradiation, and toxicology, have been fraught with difficulty. The major impediments to the creation of satisfactory animal models have included an inability to reproduce the chronic disease in a stable, reproducible format. Recently, with the promise of potentially successful growth factor-mediated therapeutic lymphangiogenesis, and with the enhanced availability of investigative tools to assess therapeutic responses to molecular therapies, there has been a resurgence of interest in the development of viable animal models of lymphatic insufficiency. Current research has led to the development of genetic and postsurgical models of lymphedema that closely simulate the human conditions of primary and secondary lymphatic insufficiency, respectively. Such models will help to refine the assessment of various therapeutic approaches and their potential applicability to human disease interventions.
The development of animal model systems for the study of the lymphatic system has resulted in an explosion of information regarding the mechanisms governing lymphatic development and the diseases associated with lymphatic dysfunction. Animal studies have led to a new molecular model of embryonic lymphatic vascular development, and have provided insight into the pathophysiology of both inherited and acquired lymphatic insufficiency. It has become apparent, however, that the importance of the lymphatic system to human disease extends, beyond its role in lymphedema, to many other diverse pathologic processes, including, very notably, inflammation and tumor lymphangiogenesis. Here, we have undertaken a systematic review of the models as they relate to molecular and functional characterization of the development, maturation, genetics, heritable and acquired diseases, and neoplastic implications of the lymphatic system. The translation of these advances into therapies for human diseases associated with lymphatic dysfunction will require the continued study of the lymphatic system through robust animal disease models that simulate their human counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.