Microplastics (MPs) are the most numerous debris reported in marine environments and assessment of the amounts of MPs that accumulate in wild organisms is necessary for risk assessment. Our objective was to assess MP contamination in mussels collected around the coast of Scotland (UK) to identify characteristics of MPs and to evaluate risk of human exposure to MPs via ingestion of mussels. We deployed caged mussels (Mytilus edulis) in an urbanised estuary (Edinburgh, UK) to assess seasonal changes in plastic pollution, and collected mussels (Mytilus spp and subtidal Modiolus modiolus) from eight sampling stations around Scotland to enumerate MP types at different locations. We determined the potential exposure of humans to household dust fibres during a meal to compare with amounts of MPs present in edible mussels. The mean number of MPs in M. modiolus was 0.086 ± 0.031 (SE, n = 6)/g ww (3.5 ± 1.29 (SE) per mussel). In Mytilus spp, the mean number of MPs/g ww was 3.0 ± 0.9 (SE, n = 36) (3.2 ± 0.52 (SE) per mussel), but weight dependent. The visual accuracy of plastic fibres identification was estimated to be between 48 and 50%, using Nile Red staining and FT-IR methodologies, respectively, halving the observed amounts of MPs in wild mussels. We observed an allometric relationship between the number of MPs and the mussels wet weight. Our predictions of MPs ingestion by humans via consumption of mussels is 123 MP particles/y/capita in the UK and can go up to 4620 particles/y/capita in countries with a higher shellfish consumption. By comparison, the risk of plastic ingestion via mussel consumption is minimal when compared to fibre exposure during a meal via dust fallout in a household (13,731-68,415 particles/Y/capita).
Efforts to restore the native oyster Ostrea edulis and its associated habitats are gaining momentum across Europe. Several projects are currently running or being planned. To maximize the success of these, it is crucial to draw on existing knowledge and experience in order to design, plan and implement restoration activities in a sustainable and constructive approach. For the development of best practice recommendations and to promote multidimensional knowledge and technology exchange, the Native Oyster Restoration Alliance (NORA) was formed by partners from science, technology, nature conservation, consultancies, commercial producers and policy-makers. The NORA network will enhance scientific and practical progress in flat oyster restoration, such as in project planning and permitting, seed oyster production, disease management and monitoring. It also focuses on joint funding opportunities and the potential development of national and international regulatory frameworks. The main motivation behind NORA is to facilitate the restoration of native oyster habitat within its historic biogeographic range in the North Sea and other European seas along with the associated ecosystem services; services such as enhancing biodiversity, including enhanced fish stocks, nutrient cycling and sediment stabilization. NORA members agreed on a set of joint recommendations and strongly advise that any restoration measure should respect and apply these recommendations: The Berlin Oyster Recommendation is presented here. It will help guide the development of the field by developing and applying best practice accordingly. NORA also aims to combine the outreach activities of local projects for improved community support and awareness and to provide educational material to increase knowledge of the key ecological role of this species and increase awareness among regulators, permit providers and stakeholders. A synthesis of O. edulis restoration efforts in Europe is provided and underlines the general significance in the field.
Bivalve habitat restoration is growing in geographic extent and scale globally. While addressing the wide‐scale loss of these biogenic habitats is still a key motivation behind restoration efforts, stakeholders and funders are increasingly drawn to shellfish restoration for the many ecosystem services these habitats provide.
There is clear evidence for the provision of ecosystem services from species targeted for restoration in the USA, in particular Crassostrea virginica. Ecosystem services, however, remain largely unquantified or even undescribed for the majority of other species targeted for restoration.
A structured review of the literature was undertaken and supplemented by expert knowledge to identify which ecosystem services are documented in the following other bivalve species targeted for restoration: Ostrea edulis, Ostrea angasi, Crassostrea rhizophorae, Perna canaliculus, Modiolus modiolus, Mytilus edulis, Mytilus platensis, Crassostrea gigas, Ostrea denselamellosa, Crassostrea ariakensis, and Crassostrea sikamea.
Key knowledge gaps in quantifying ecosystem services and the ecosystem engineering properties of habitat‐building bivalves contributing to the provision of ecosystem services were identified. Ecosystem services with the potential to be widely applicable across bivalve habitat‐building species were identified.
Though there is evidence that many of the ecosystem engineering properties that underpin the provision of ecosystem services are universal, the degree to which services are provided will vary between locations and species. Species‐specific, in situ, studies are needed in order to avoid the inappropriate transfer of the ecosystem service delivery between locations, and to further build support and understanding for these emerging targets of restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.