Background: Malawi's National Malaria Control Programme (NMCP) is developing a new strategic plan for 2023-2030 to combat malaria and recognizes that a blanket approach to malaria interventions is no longer feasible. To inform this new strategy, the NMCP set up a task force comprising 18 members from various sectors, which convened a meeting to stratify the malaria burden in Malawi and recommend interventions for each stratum. Methods: The burden stratification workshop took place from November 29 to December 2, 2022, in Blantyre, Malawi, and collated essential data on malaria burden indicators, such as incidence, prevalence, and mortality. Workshop participants reviewed the malaria burden and intervention coverage data to describe the current status and identified the districts as a appropriate administrative level for stratification and action. Two scenarios were developed for the stratification, based on composites of three variables. Scenario 1 included incidence, prevalence, and under-five all-cause mortality, while Scenario 2 included total malaria cases, prevalence, and under-five all-cause mortality counts. The task force developed four burden strata (highest, high, moderate, and low) for each scenario, resulting in a final list of districts assigned to each stratum. Results: The task force concluded with 10 districts in the highest-burden stratum (Nkhotakota, Salima, Mchinji, Dowa, Ntchisi, Mwanza, Likoma, Lilongwe, Kasungu and Mangochi) 11 districts in the high burden stratum (Chitipa, Rumphi, Nkhata Bay, Dedza, Ntcheu, Neno, Thyolo, Nsanje, Zomba, Mzimba and Mulanje) and seven districts in the moderate burden stratum (Karonga, Chikwawa, Balaka, Machinga, Phalombe, Blantyre, and Chiradzulu). There were no districts in the low-burden stratum. Conclusion: The next steps for the NMCP are to review context-specific issues driving malaria transmission and recommend interventions for each stratum. Overall, this burden stratification workshop provides a critical foundation for developing a successful malaria strategic plan for Malawi.
Background Soil Transmitted Helminths (STH) infect over 1.5 billion people globally and are associated with anemia and stunting, resulting in an annual toll of 1.9 million Disability-Adjusted Life Years (DALYs). School-based deworming (SBD), via mass drug administration (MDA) campaigns with albendazole or mebendazole, has been recommended by the World Health Organization to reduce levels of morbidity due to STH in endemic areas. DeWorm3 is a cluster-randomized trial, conducted in three study sites in Benin, India, and Malawi, designed to assess the feasibility of interrupting STH transmission with community-wide MDA as a potential strategy to replace SBD. This analysis examines data from the DeWorm3 trial to quantify discrepancies between school-level reporting of SBD and gold standard individual-level survey reporting of SBD. Methodology/Principal findings Population-weighted averages of school-level SBD calculated at the cluster level were compared to aggregated individual-level SBD estimates to produce a Mean Squared Error (MSE) estimate for each study site. In order to estimate individual-level SBD coverage, these MSE values were applied to SBD estimates from the control arm of the DeWorm3 trial, where only school-level reporting of SBD coverage had been collected. In each study site, SBD coverage in the school-level datasets was substantially higher than that obtained from individual-level datasets, indicating possible overestimation of school-level SBD coverage. When applying observed MSE to project expected coverages in the control arm, SBD coverage dropped from 89.1% to 70.5% (p-value < 0.001) in Benin, from 97.7% to 84.5% (p-value < 0.001) in India, and from 41.5% to 37.5% (p-value < 0.001) in Malawi. Conclusions/Significance These estimates indicate that school-level SBD reporting is likely to significantly overestimate program coverage. These findings suggest that current SBD coverage estimates derived from school-based program data may substantially overestimate true pediatric deworming coverage within targeted communities. Trial registration NCT03014167.
Background Soil Transmitted Helminths (STH) infect over 1.5 billion people globally and are associated with anemia and stunting, resulting in an annual toll of 1.9 million Disability-Adjusted Life Years (DALYs). School-based deworming (SBD), via mass drug administration (MDA) campaigns with albendazole or mebendazole, has been recommended by the World Health Organization to reduce levels of morbidity due to STH in endemic areas. DeWorm3 is a cluster-randomized trial, conducted in three study sites in Benin, India, and Malawi, designed to assess the feasibility of interrupting STH transmission with community-wide MDA as a potential strategy to replace SBD. This analysis examines data from the DeWorm3 trial to quantify discrepancies between school-level reporting of SBD and gold standard individual-level survey reporting of SBD. Methodology/Principal Findings Population-weighted averages of school-level SBD calculated at the cluster level were compared to aggregated individual-level SBD estimates to produce a Mean Squared Error (MSE) estimate for each study site. In order to estimate individual-level SBD coverage, these MSE values were applied to SBD estimates from the control arm of the DeWorm3 trial, where only school-level reporting of SBD coverage had been collected. In each study site, SBD coverage in the school-level datasets was substantially higher than that obtained from individual-level datasets, indicating possible overestimation of school-level SBD coverage. When applying observed MSE to project expected coverages in the control arm, SBD coverage dropped from 89.1% to 70.5% (p-value < 0.001) in Benin, from 97.7% to 84.5% (p-value < 0.001) in India, and from 41.5% to 37.5% (p-value < 0.001) in Malawi. Conclusions/Significance These estimates indicate that school-level SBD reporting is likely to significantly overestimate program coverage. These findings suggest that current SBD coverage estimates derived from school-based program data may substantially overestimate true pediatric deworming coverage within targeted communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.