Microsurgical techniques for the treatment of large peripheral nerve injuries (such as the gold standard autograft) and its main clinically approved alternative-hollow nerve guidance conduits (NGCs)-have a number of limitations that need to be addressed. NGCs, in particular, are limited to treating a relatively short nerve gap (4 cm in length) and are often associated with poor functional recovery. Recent advances in biomaterials and tissue engineering approaches are seeking to overcome the limitations associated with these treatment methods. This review critically discusses the advances in biomaterial-based NGCs, their limitations and where future improvements may be required. Recent developments include the incorporation of topographical guidance features and/or intraluminal structures, which attempt to guide Schwann cell (SC) migration and axonal regrowth towards their distal targets. The use of such strategies requires consideration of the size and distribution of these topographical features, as well as a suitable surface for cell-material interactions. Likewise, cellular and molecular-based therapies are being considered for the creation of a more conductive nerve microenvironment. For example, hurdles associated with the short half-lives and low stability of molecular therapies are being surmounted through the use of controlled delivery systems. Similarly, cells (SCs, stem cells and genetically modified cells) are being delivered with biomaterial matrices in attempts to control their dispersion and to facilitate their incorporation within the host regeneration process. Despite recent advances in peripheral nerve repair, there are a number of key factors that need to be considered in order for these new technologies to reach the clinic.
Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/ macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single holdout set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.organoid | machine learning | tissue engineering | differentiation | toxicology T here is a pressing need for improved methods to assess the safety of drugs and other compounds (1-5). Success rates for drug approval are declining despite higher research and development spending (6), and clinical trials often fail due to toxicities that were not identified through animal testing (7). In addition, most of the chemicals in commerce have not been rigorously assessed for safety despite growing concerns over the potential impact of industrial and environmental exposures on human health (2-5). Animal models are costly, time consuming, and fail to recapitulate many aspects of human physiology, which has motivated agencies such as the National Institutes of Health (NIH) and the US Environmental Protection Agency (EPA) to initiate programs that emphasize human cellular approaches for assessing the safety of drugs (1) and environmental chemicals (2, 3). In vitro cellular models that accurately reflect human physiology have the potential to improve the prediction of drug toxicity early in the development pipeline (1) and would provide a cost-effective approach for testing other sources of chemical exposure, including food additives, cosmetics, pesticides, and industrial chemicals (2-5).The human brain is particularly sensitive to toxic insults during development and early childhood (8), and there is growing concern that exposure to environmental chemicals may be linked to the rising incidence of neurodevelopmental disorders worldwide (4). Human brain development is mediated by highly coordinated cellular interactions between functionally ...
The physiological relevance of Matrigel as a cell-culture substrate and in angiogenesis assays is often called into question. Here, we describe an array-based method for the identification of synthetic hydrogels that promote the formation of robust in vitro vascular networks for the detection of putative vascular disruptors, and that support human embryonic stem cell expansion and pluripotency. We identified hydrogel substrates that promoted endothelial-network formation by primary human umbilical vein endothelial cells and by endothelial cells derived from human induced pluripotent stem cells, and used the hydrogels with endothelial networks to identify angiogenesis inhibitors. The synthetic hydrogels show superior sensitivity and reproducibility over Matrigel when evaluating known inhibitors, as well as in a blinded screen of a subset of 38 chemicals, selected according to predicted vascular disruption potential, from the Toxicity ForeCaster library of the US Environmental Protection Agency. The identified synthetic hydrogels should be suitable alternatives to Matrigel for common cell-culture applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.