OBJECTIVEThe mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) pathway is a critical signaling component in the development of obesity-linked insulin resistance and operates a nutrient-sensing negative feedback loop toward the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Whereas acute treatment of insulin target cells with the mTOR complex 1 (mTORC1) inhibitor rapamycin prevents nutrient-induced insulin resistance, the chronic effect of rapamycin on insulin sensitivity and glucose metabolism in vivo remains elusive.RESEARCH DESIGN AND METHODSTo assess the metabolic effects of chronic inhibition of the mTORC1/S6K1 pathway, rats were treated with rapamycin (2 mg/kg/day) or vehicle for 15 days before metabolic phenotyping.RESULTSChronic rapamycin treatment reduced adiposity and fat cell number, which was associated with a coordinated downregulation of genes involved in both lipid uptake and output. Rapamycin treatment also promoted insulin resistance, severe glucose intolerance, and increased gluconeogenesis. The latter was associated with elevated expression of hepatic gluconeogenic master genes, PEPCK and G6Pase, and increased expression of the transcriptional coactivator peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) as well as enhanced nuclear recruitment of FoxO1, CRTC2, and CREB. These changes were observed despite normal activation of the insulin receptor substrate/PI 3-kinase/Akt axis in liver of rapamycin-treated rats, as expected from the blockade of the mTORC1/S6K1 negative feedback loop.CONCLUSIONSThese findings unravel a novel mechanism by which mTORC1/S6K1 controls gluconeogenesis through modulation of several key transcriptional factors. The robust induction of the gluconeogenic program in liver of rapamycin-treated rats underlies the development of severe glucose intolerance even in the face of preserved hepatic insulin signaling to Akt and despite a modest reduction in adiposity.
. Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286: R1167-R1175, 2004 10.1152/ajpregu.00558.2003.-White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo. body fat; cellularity; hyperplasia; pseudorabies virus; tract tracing; white fat ENERGY BALANCE IS MAINTAINED through alterations in energy intake and energy expenditure. Lipid is the primary form of stored energy in mammals and is largely found in white adipose tissue (WAT) as triacylglycerols. Prolonged positive energy balance promotes obesity that in humans is associated with a number of health risks (34). The deposition of lipid initially results in increases in fat cell size (FCS), but soon triggers increases in fat cell number (FCN; for review, see Ref. 16). The processes underlying this hypercellularity, a hallmark sign of obesity, are not well understood (for review, see Ref. 21). Furthermore, the accretion of lipid in and of itself is not necessarily associated with these health risks (38); rather it is the distribution of body fat that is critical (19). That is, visceral obesity is closely associated with development of the "metabolic syndrome" and type II diabetes (for review, see Ref. 44). Thus understanding how body fat is preferentially deposited and mobilized is necessary for the prevention and treatment of obesity, respectively.One mechanism that may underlie the differential accumulation of lipid by WAT depots, as well as the differential mobilization of lipid, i...
DEP domain containing mTOR-interacting protein (DEPTOR) inhibits the mechanistic target of rapamycin (mTOR) but its in vivo functions are unknown. Previous work indicates that Deptor is part of the Fob3a quantitative trait locus (QTL) linked to obesity/leanness in mice with Deptor expression being elevated in white adipose tissue (WAT) of obese animals. This relation is unexpected considering the positive role of mTOR in adipogenesis. Here, we dissected the Fob3a QTL and show that Deptor is the highest priority candidate promoting WAT expansion in this model. Consistently, transgenic mice overexpressing DEPTOR accumulate more WAT. Furtheremore, in humans, DEPTOR expression in WAT correlates with the degree of obesity. We show that DEPTOR is induced by glucocorticoids during adipogenesis and that its overexpression promotes, while its suppression blocks, adipogenesis. DEPTOR activates the pro-adipogenic Akt/PKB-PPAR-γ axis by dampening mTORC1-mediated feedback inhibition of insulin signaling. These results establish DEPTOR as a new regulator of adipogenesis.
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.