Please cite this article in press as: W.T. Taitano et al., A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation, J. Comput. Phys. (2015), http://dx.
AbstractIn this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional RosenbluthFokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single-and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and and to exhibit manifestly postive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
In this study, we propose an adaptive velocity-space discretization scheme for the multi-species, multidimensional Rosenbluth-Fokker-Planck (RFP) equation, which is exactly mass-, momentum-, and energyconserving. Unlike most earlier studies, our approach normalizes the velocity-space coordinate to the temporally varying individual plasma species' local-thermal velocity, v th (t), and explicitly considers the resulting inertial terms in the Fokker-Planck equation. Our conservation strategy employs nonlinear constraints to enforce discretely the conservation properties of these inertial terms and the Fokker-Planck collision operator. To deal with situations of extreme thermal velocity disparities among different species, we employ an asymptotic v th-ratio-based expansion of the Rosenbluth potentials that only requires the computation of several velocity-space integrals. Numerical examples demonstrate the favorable efficiency and accuracy properties of the scheme. In particular, we show that the combined use of the velocity-grid adaptivity and asymptotic expansions delivers many orders-of-magnitude savings in mesh resolution requirements compared to a single, static uniform mesh.
A recent proof-of-principle study proposes an energy-and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [Chen et al, J. Comput. Phys., 230 (2011) 7018].The algorithm in the reference employs an unpreconditioned Jacobian-free Newton-Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solve is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron-ion mass ratio.Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.
We consider a 1D-2V Vlasov-Fokker-Planck multi-species ionic description coupled to fluid electrons. We address temporal stiffness with implicit time stepping, suitably preconditioned. To address temperature disparity in time and space, we extend the conservative adaptive velocity-space discretization scheme proposed in [Taitano et al., J. Comput. Phys., 318, 391-420, (2016)] to a spatially inhomogeneous system. In this approach, we normalize the velocity-space coordinate to a temporally and spatially varying local characteristic speed per species. We explicitly consider the resulting inertial terms in the Vlasov equation, and derive a discrete formulation that conserves mass, momentum, and energy up to a prescribed nonlinear tolerance upon convergence. Our conservation strategy employs nonlinear constraints to enforce these properties discretely for both the Vlasov operator and the Fokker-Planck collision operator. Numerical examples of varying degrees of complexity, including shock-wave propagation, demonstrate the favorable efficiency and accuracy properties of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.