With the emergence of industrial IoT and cloud computing, and the advent of 5G and edge clouds, there are ambitious expectations on elasticity, economies of scale, and fast time to market for demanding use cases in the next generation of ICT networks. Responsiveness and reliability of wireless communication links and services in the cloud are set to improve significantly as the concept of edge clouds is becoming more prevalent. To enable industrial uptake we must provide cloud capacity in the networks but also a sufficient level of simplicity and self-sustainability in the software platforms. In this paper, we present a research test-bed built to study mission-critical control over the distributed edge cloud. We evaluate system properties using a conventional control application in the form of a Model Predictive Controller. Our cloud platform provides the means to continuously operate our mission-critical application while seamlessly relocating computations across geographically dispersed compute nodes. Through our use of 5G wireless radio, we allow for mobility and reliably provide compute resources with low latency, at the edge. The primary contribution of this paper is a state-of-the art, fully operational test-bed showing the potential for merged IoT, 5G, and cloud. We also provide an evaluation of the system while operating a mission-critical application and provide an outlook on a novel research direction.
Controlling robots in real-time over a wireless interface present fundamental challenges for forthcoming fifth generation wireless networks. Mission critical real-time applications such as telesurgery over the tactile Internet require a communication link that is both ultra-reliable and low-latency, and that simultaneously serving multiple devices and applications. Wireless performance requirements for these applications surpass the capabilities of current wireless cellular standards. The prevailing ambitions for the fifth generation wireless specifications go beyond higher throughput and embrace the wireless performance demands of mission critical real-time applications in robotics and the Internet of Things. To accommodate these demands, changes have to be made across all layers of the wireless infrastructure. The fifth generation wireless standards are far from finalized but massive Multiple-Input Multiple-Output has surfaced as a strong radio access technology candidate and has great potential to cope with all these stringent requirements. In this paper, we investigate how Ultra-Reliable and Low-Latency Communication with massive MIMO can be achieved for bilateral teleoperation, an integral part of the tactile Internet. We conclude through simulation what the performance bounds are for massive MIMO and thus how to configure such a system for near deterministic latency and what the inherit trade-offs are.
To reduce the congestion due to the future bandwidthhungry applications in domains such as Health care, Internet of Things (IoT), etc., we study the benefit of introducing additional Data Centers (DCs) closer to the network edge for the optimal application placement. Our study shows that the edge layer DCs in a Mobile Edge Network (MEN) infrastructure is cost beneficial for the bandwidth-hungry applications having their strong demand locality and in the scenarios where large capacity is deployed at the edge layer DCs. The cost savings for such applications can go up to 67%. Additional intermediate layer DCs close to the root DC can be marginally cost beneficial for the compute intensive applications with medium or low demand locality. Hence, a Telecom Network Operator should start building an edge DC first having capacity up to hundreds of servers at the network edge to cater the emerging bandwidthhungry applications and to minimize its operational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.