RESUMO: Este trabalho trata da análise dinâmica de treliças no plano, onde estudam-se os efeitos da não-linearidade geométrica nessas estruturas quando solicitadas por carregamentos dinâmicos. Nesse contexto, define-se a formulação baseada na análise não-linear geométrica que descreve o comportamento de treliças discretizadas por elementos finitos, utilizando-se o método corrotacional. Para a resolução dos sistemas não-lineares, utiliza-se o método numérico de Newton-Raphson e para a integração temporal dessas equações, utiliza-se o método de Newmark. Por meio dos eixos corrotacionais é possível separar os movimentos de corpo rígido dos movimentos deformacionais. Para verificar a eficácia da formulação estudada no presente trabalho, foram realizados exemplos com treliças planas usualmente empregadas em análises com grandes não-linearidades geométricas na literatura técnica. De forma geral, a formulação estudada apresentada se demostrou eficiente para a análise dinâmica de treliças com grandes não-linearidades geométricas. ABSTRACT: This paper deals with dynamic analysis of two dimensional trusses, where the effects of geometric nonlinearity in these structures is studied when subjected by dynamic loads. In this context, the formulation based on geometric nonlinear analysis that describes the behavior of trusses discretized by finite elements using the Corotational Method is developed. For solving nonlinear systems is used the Numerical Method of Newton-Raphson and for the time integration of these equations is used Newmark Method. Through the corotational axis is possible to separate the rigid body movements from deformational movements. To verify the accuracy of the formulation studied in the present work, examples with plane trusses usually employed in analyzes with large geometric non-linearities in the technical literature were made. In general, the studied formulation presented was efficient for the dynamic analysis of trusses with large geometric nonlinearities.
This paper reports the results of three thin wythe precast sandwich panels tested under axial load. Panel reinforcements and shear connectors in the current state of precast sandwich panels in the civil construction context are evaluated. The authors measured displacement at two distinct panel heights as well as along the panel width to provide load–displacement behavior at the cross-section level and broaden the experimental data on the subject. The test results developed in this research showed good agreement with the results available in the literature. In addition, as concrete-wall panel strength equations have been linked to the compressive behavior of precast sandwich panels, a brief review of empirical formulae is also offered in this paper. Moreover, empirical data since 2005, on both concentrical and eccentrical load testing available in the literature, are also reported.
RESUMO: Neste trabalho é descrita a formulação co-rotacional de um elemento de viga unificado, que engloba as teorias de Euler-Bernoulli e de Timoshenko e que não apresenta bloqueio por cisalhamento. A cinemática co-rotacional se baseia na separação do movimento de um sólido em uma parte deformacional, e a outra, em movimento de corpo rígido. O movimento deformacional do elemento é descrito por três modos naturais de deformação relacionados aos esforços axial, de flexão pura e de flexão simples, respectivamente. Os esforços internos gerados pelos modos de deformação naturais são autoequilibrados, o que permite obter uma matriz de rigidez tangente consistente. Descreve-se de forma detalhada a obtenção das matrizes de rigidez geométrica e material. Por meio de alguns exemplos numéricos é demonstrada a habilidade do elemento de viga unificado em lidar com grandes translações e rotações de corpo-rígido. ABSTRACT: This present paper describes the co-rotational formulation for unified beams, that combine the Euler-Bernoulli and the Timoshenko theories, witch don’t have problems with shear locking. The co-rotational cinematic is based on the separation of the montion in deformational and rigid body components. The deformation movement of the element is described by three natural modes of deformation related to the axial efforts, pure bending and simple bending. The internal forces generated by the natural deformation modulus are self-equilibrated which allows to obtain a consistent tangent stiffness matrix. Development of the geometric and the material stiffness matrix is described in details. Throughout some numerical examples present the ability of the co-rotational formulation for unified beams to handle with large translations and rotations of rigid body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.