The potentially severe side effects of systemic corticosteroids and immunosuppressants used in Pemphigus vulgaris (PV) call for novel therapeutic approaches. In this context, pharmacological inhibition of major pathogenic signalling effectors represents a promising alternative. However, we have also shown that overinhibition of effectors required for epidermal homeostasis can exacerbate PV pathophysiology implicating transepidermal keratinocyte fragility. A feedforward target validation therefore preferentially includes studies on knockout mouse models. We previously reported on successful amelioration of PV blisters following inhibition of non-apoptotic, low-level caspase-3. Here, we use conditional, keratinocyte-specific caspase-3-deficient
FAM83G/Fam83g genetic variants have been described in dogs, mice and recently also in humans. They are associated with palmoplantar keratoderma and altered hair or coat phenotype, reported as wooly phenotype in mice. FAM83G/Fam83g is an unexplored effector of temporally and spatially coordinated Wnt and BMP signalling which are key pathways in pre- and postnatal hair follicle morphogenesis and differentiation. The aim of this study was to unravel phenotypic consequences of FAM83G/Fam83g variants on hair coat formation in dogs and mice. Our results show differences in hair types and hair shaft structures in both species. Additionally, mice exhibit deregulated hair cycle progression which timely correlates with defective Wnt signalling (Axin2) and Bmp2/4 expression. These results affirm the involvement of FAM83G in hair morphogenesis, hair follicle differentiation and cycling.
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Pemphigus is a severe autoimmune bullous disease of the skin and/or mucous membranes caused by autoantibodies that mainly target the adhesion proteins desmoglein (Dsg) 3 and/or Dsg1. Clinically, pemphigus is characterized by flaccid blistering, leading to severe water and electrolyte loss. Before the introduction of corticosteroid treatment, the disease turned out to be fatal in many cases. Despite recent therapeutic improvements, treatment of pemphigus patients is centred on prolonged systemic immunosuppression and remains challenging. Current drug development for pemphigus has a strong focus on disease-causing B cells and autoantibodies and, more recently, also on modulating autoantibody-induced tissue pathology and keratinocyte signalling. This drug development requires reliable pre-clinical model systems replicating the pathogenesis of the human disease. Among those are neonatal and adult mouse models based on the transfer of Dsg3, Dsg1/3 or Dsg1-specific autoantibodies. To reduce the number of animal experiments, we recently established a standardized human skin organ culture (HSOC) model for pemphigus. This model reproduces the clinical phenotype of autoantibody-induced tissue pathology in pemphigus vulgaris. For induction of blistering, a recombinant single-chain variable fragment (scFv) targeting both Dsg1 and 3 is injected into pieces of human skin (obtained from plastic surgeries). Further characterization of the HSOC model demonstrated that key morphologic, molecular and immunologic features of pemphigus are being replicated. Thus, the pemphigus HSOC model is an excellent alternative to pemphigus animal model systems that are based on the transfer of (auto)antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.