Objective: The accuracy of the AMPM was evaluated by comparing reported energy intake (EI) with total energy expenditure (TEE) by using the doubly labeled water (DLW) technique. Design: The 524 volunteers, aged 30 -69 y, included an equal number of men and women recruited from the Washington, DC, area. Each subject was dosed with DLW on the first day of the 2-wk study period; three 24-h recalls were collected during the 2-wk period by using the AMPM. The first recall was conducted in person, and subsequent recalls were over the telephone. Results: Overall, the subjects underreported EI by 11% compared with TEE. Normal-weight subjects [body mass index (in kg/m 2 ) 25] underreported EI by 3%. By using a linear mixed model, 95% CIs were determined for the ratio of EI to TEE. Approximately 78% of men and 74% of women were classified as acceptable energy reporters (within 95% CI of EI:TEE). Both the percentage by which energy was underreported and the percentage of subjects classified as low energy reporters (95% CI of EI:TEE) were highest for subjects classified as obese (body mass index 30). Conclusions: Although the AMPM accurately reported EIs in normal-weight subjects, research is warranted to enhance its accuracy in overweight and obese persons.Am J Clin Nutr 2008;88: 324 -32.
Normal-weight subjects are able to comply with a 1 meal/d diet. When meal frequency is decreased without a reduction in overall calorie intake, modest changes occur in body composition, some cardiovascular disease risk factors, and hematologic variables. Diurnal variations may affect outcomes.
An unresolved issue in the field of diet and health is if and how changes in meal frequency affect energy metabolism in humans. We therefore evaluated the influence of reduced meal frequency without a reduction in energy intake on glucose metabolism in normal weight healthy male and female subjects. The study was a randomized cross-over design, with 2 eight-week treatment periods (with an intervening 11 week off-diet period) in which subjects consumed all of their calories for weight maintenance distributed in either 3 meals or 1 meal per day (consumed between 17:00 and 21:00). Energy metabolism was evaluated at designated time points throughout the study by performing morning oral glucose tolerance tests (OGTT) and measuring levels of glucose, insulin, glucagon, leptin, ghrelin, adiponectin, resistin and brain-derived neurotrophic factor (BDNF). Subjects consuming 1 meal/d exhibited higher morning fasting plasma glucose levels, greater and more sustained elevations of plasma glucose concentrations and a delayed insulin response in the OGTT compared to subjects consuming 3 meal/d. Levels of ghrelin were elevated in response to the 1 meal/ d regimen. Fasting levels of insulin, leptin, ghrelin, adiponectin, resistin and BDNF were not significantly affected by meal frequency. Subjects consuming a single large daily meal exhibit elevated fasting glucose levels, and impaired morning glucose tolerance associated with a delayed insulin response, during a 2 month diet period compared to those consuming 3 meals/day. The impaired glucose tolerance was reversible and was not associated with alterations in the levels of adipokines or BDNF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.