In this paper a methodological approach to the classification of pigmented skin lesions in dermoscopy images is presented. First, automatic border detection is performed to separate the lesion from the background skin. Shape features are then extracted from this border. For the extraction of color and texture related features, the image is divided into various clinically significant regions using the Euclidean distance transform. This feature data is fed into an optimization framework, which ranks the features using various feature selection algorithms and determines the optimal feature subset size according to the area under the ROC curve measure obtained from support vector machine classification. The issue of class imbalance is addressed using various sampling strategies, and the classifier generalization error is estimated using Monte Carlo cross validation. Experiments on a set of 564 images yielded a specificity of 92.34% and a sensitivity of 93.33%.
Background-Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders.Methods-In this article, we present a systematic overview of the recent border detection methods in the literature paying particular attention to computational issues and evaluation aspects.Conclusion-Common problems with the existing approaches include the acquisition, size, and diagnostic distribution of the test image set, the evaluation of the results, and the inadequate description of the employed methods. Border determination by dermatologists appears to depend upon higher-level knowledge, therefore it is likely that the incorporation of domain knowledge in automated methods will enable them to perform better, especially in sets of images with a variety of diagnoses.
Background
Evolving dermoscopic terminology motivated us to initiate a new consensus.
Objective
We sought to establish a dictionary of standardized terms.
Methods
We reviewed the medical literature, conducted a survey, and convened a discussion among experts.
Results
Two competitive terminologies exist, a more metaphoric terminology that includes numerous terms and a descriptive terminology based on 5 basic terms. In a survey among members of the International Society of Dermoscopy (IDS) 23.5% (n = 201) participants preferentially use descriptive terminology, 20.1% (n = 172) use metaphoric terminology, and 484 (56.5%) use both. More participants who had been initially trained by metaphoric terminology prefer using descriptive terminology than vice versa (9.7% vs 2.6%, P < .001). Most new terms that were published since the last consensus conference in 2003 were unknown to the majority of the participants. There was uniform consensus that both terminologies are suitable, that metaphoric terms need definitions, that synonyms should be avoided, and that the creation of new metaphoric terms should be discouraged. The expert panel proposed a dictionary of standardized terms taking account of metaphoric and descriptive terms.
Limitations
A consensus seeks a workable compromise but does not guarantee its implementation.
Conclusion
The new consensus provides a revised framework of standardized terms to enhance the consistent use of dermoscopic terminology.
Background
As a result of advances in skin imaging technology and the development of suitable image processing techniques, during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, because the accuracy of the subsequent steps crucially depends on it.
Methods
In this article, we present a fast and unsupervised approach to border detection in dermoscopy images of pigmented skin lesions based on the statistical region merging algorithm.
Results
The method is tested on a set of 90 dermoscopy images. The border detection error is quantified by a metric in which three sets of dermatologist-determined borders are used as the ground-truth. The proposed method is compared with four state-of-the-art automated methods (orientation-sensitive fuzzy c-means, dermatologist-like tumor extraction algorithm, meanshift clustering, and the modified JSEG method).
Conclusion
The results demonstrate that the method presented here achieves both fast and accurate border detection in dermoscopy images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.