Novel fimbriae were isolated and purified from the human enteropathogen SalmoneUa enteritidis 27655. These fimbriae were thin (measuring 3 to 4 nm in diameter), were extremely aggregative, and remained cell associated despite attempts to separate them from blended cells by centrifugation. The thin fimbriae were not solubilized in 5 M NaOH or in boiling 0.5% deoxycholate, 8 M urea, or 1 to 2% sodium dodecyl sulfate (SDS) with or without 5% 13-mercaptoethanol. Therefore, an unconventional purification procedure based on the removal of contaminating cell macromolecules in sonicated cell extracts by enzymatic digestion and preparative SDS-polyacrylamide gel electrophoresis (PAGE) was used. The insoluble fimbriae recovered from the well of the gel required depolymerization in formic acid prior to analysis by SDS-PAGE. Acid depolymerization revealed that the fimbriae were composed of fimbrin subunits, each with an apparent molecular mass of 17 kDa. Although their biochemical characteristics and amino acid composition were typical of fimbriae in general, these thin fimbriae were clearly distinct from other previously characterized fimbriae. Moreover, their fimbrin subunits had a unique N-terminal amino acid sequence. Native fimbriae on whole cells were specifically labeled with immune serum raised to the purified fimbriae. This immune serum also reacted with the denatured 17-kDa fimbrin protein in Western blots. The polyclonal immune serum did not cross-react with the other two native fimbrial types produced by this strain or with their respective fimbrins on Western blots (immunoblots). Therefore, these fimbriae represent the third fimbrial type produced by the enteropathogen S. enteritidis.
Salmonella spp. are environmentally persistent pathogens that have served as one of the important models for understanding how bacteria adapt to stressful conditions. However, it remains poorly understood how they survive extreme conditions encountered outside their hosts. Here we show that the rdar morphotype, a multicellular phenotype characterized by fimbria-and cellulose-mediated colony pattern formation, enhances the resistance of Salmonella to desiccation. When colonies were stored on plastic for several months in the absence of exogenous nutrients, survival of wild-type cells was increased compared to mutants deficient in fimbriae and/or cellulose production. Differences between strains were further highlighted upon exposure to sodium hypochlorite, as cellulose-deficient strains were 1,000-fold more susceptible. Measurements of gene expression using luciferase reporters indicated that production of thin aggregative fimbriae (Tafi) may initiate formation of colony surface patterns characteristic of the rdar morphotype. We hypothesize that Tafi play a role in the organization of different components of the extracellular matrix. Conservation of the rdar morphotype among pathogenic S. enterica isolates and the survival advantages that it provides collectively suggest that this phenotype could play a role in the transmission of Salmonella between hosts.
In this study, we show that Salmonella produces an O-antigen capsule coregulated with the fimbria-and cellulose-associated extracellular matrix. Structural analysis of purified Salmonella extracellular polysaccharides yielded predominantly a repeating oligosaccharide unit similar to that of Salmonella enterica serovar Enteritidis lipopolysaccharide O antigen with some modifications. Putative carbohydrate transport and regulatory operons important for capsule assembly and translocation, designated yihU-yshA and yihVW, were identified by screening a random transposon library with immune serum generated to the capsule. The absence of capsule was confirmed by generating various isogenic ⌬yih mutants, where yihQ and yihO were shown to be important in capsule assembly and translocation. Luciferase-based expression studies showed that AgfD regulates the yih operons in coordination with extracellular matrix genes coding for thin aggregative fimbriae and cellulose. Although the capsule did not appear to be important for multicellular behavior, we demonstrate that it was important for survival during desiccation stress. Since the yih genes are conserved in salmonellae and the O-antigen capsule was important for environmental persistence, the formation of this surface structure may represent a conserved survival strategy.
The binding of human fibronectin and Congo red by an autoaggregative Salmonella enteritidis strain was found to be dependent on its ability to produce thin, aggregative fimbriae, named SEF 17 (for Salmonella enteritidis fimbriae with an apparent fimbrin molecular mass of 17 kDa). Two other fimbrial types produced by S. enteritidis, SEF 14 and SEF 21, were not responsible for the aggregative phenotype or for fibronectin binding. SEF 17-negative TnphoA mutants which retained the ability to produce SEF 14 and SEF 21 were unable to bind human fibronectin or Congo red and lost the ability to autoaggregate. Only purified SEF 17 but not purified SEF 14 or SEF 21 bound fibronectin in a solid-phase binding assay. Furthermore, only SEF 17 was able to inhibit fibronectin binding to S. enteritidis whole cells in a direct competition enzyme-linked immunosorbent assay. These results indicate that SEF 17 are the fimbriae responsible for binding fibronectin by this enteropathogen.
Salmonella enterica serovar Typhi can establish a chronic, asymptomatic infection of the human gallbladder, suggesting that this bacterium utilizes novel mechanisms to mediate enhanced colonization and persistence in a bile-rich environment. Gallstones are one of the most important risk factors for developing carriage, and we have previously demonstrated that salmonellae form biofilms on human gallstones in vitro. Thus, we hypothesize that bile-induced biofilms on gallstone surfaces promote gallbladder colonization and maintenance of the carrier state. A colanic acid/cellulose S. enterica serovar Typhimurium double mutant formed a mature biofilm on gallstones in a test tube assay and in a new, gallstone-independent assay using cholesterol-coated Eppendorf tubes. These data suggest the presence of an unidentified exopolysaccharide necessary for mature biofilm development and demonstrate specific binding affinity between salmonellae and cholesterol. Our experiments indicate that the Salmonella O-antigen capsule (yihU-yshA and yihV-yihW) is a crucial determinant in gallstone and cholesterol biofilms but that expression of this exopolysaccharide is not necessary for binding to glass or plastic. Real-time PCR revealed that growth in bile resulted in upregulation of the O-antigen capsule-encoding operon in an agfD-independent manner. Thus, the O-antigen capsule genes are bile induced, and the capsule produced by the enzymes of this operon is specifically required for biofilm formation on cholesterol gallstones. These studies provide new therapeutic targets for preventing asymptomatic serovar Typhi gallbladder carriage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.