Nuclear hormone receptors comprise a superfamily of ligand-modulated transcription factors that mediate the transcriptional activities of steroids, retinoids, and thyroid hormones. A growing number of related proteins have been identified that possess the structural features of hormone receptors, but that lack known ligands. Known as orphan receptors, these proteins represent targets for novel signaling molecules. We have isolated a mammalian orphan receptor that forms a heterodimeric complex with the retinoid X receptor. A screen of candidate ligands identified farnesol and related metabolites as effective activators of this complex. Farnesol metabolites are generated intracellularly and are required for the synthesis of cholesterol, bile acids, steroids, retinoids, and farnesylated proteins. Intermediary metabolites have been recognized as transcriptional regulators in bacteria and yeast. Our results now suggest that metabolite-controlled intracellular signaling systems are utilized by higher organisms.
The response of a cell to mitogens and differentiation agents involves the transcriptional induction of several cellular genes. Prominent among these so-called 'immediate early' or 'competence' genes are the nuclear oncogenes fos and myc. Although the precise function of these early response genes in growth control is not understood, it is likely that many of them are involved in the transition from G0 to G1 in the cell cycle. The findings that the products of nuclear proto-oncogenes jun and erbA are transcriptional factors supports the notion of the role of the nuclear oncoproteins in the regulation of gene expression. Recently, it has been reported that the FOS protein is associated in transcriptional complexes with the product of the jun oncogene, the transcription factor AP-1. As the fos gene is induced in response to mitogens during initiation of cell growth, we investigated whether expression of the nuclear transcription factor AP-1 is also inducible. We report that mouse c-jun gene transcription is rapidly induced by serum and phorbol-ester 12-o-tetradecanoyl phorbol 13-acetate (TPA). Furthermore, induction is transient and the mRNA is superinduced by inhibitors of protein synthesis.
As2O3 induces apoptosis without differentiation in retinoic acid-sensitive and retinoic acid-resistant APL cells at concentrations that are achievable in patients. As2O3 induces loss of the PML/RAR alpha fusion protein in NB4 cells, in retinoic-acid resistant cells derived from them, in fresh APL cells from patients, and in non-APL cells transfected to express this protein. As2O3 and retinoic acid induce different patterns of gene regulation, and they inhibit the phenotypes induced by each other. Understanding the molecular basis of these differences in the effects of As2O3 and retinoic acid may guide the clinical use of arsenic compounds and provide insights into the management of leukemias that do not respond to retinoic acid.
Gene expression is modulated by the specific interactions of nuclear proteins with unique regulatory sequences in the genome. Proteins involved in transcriptional regulation seem to be either transcription factors or transcription modulators and their interactions are crucial in determining whether the expression of a specific gene is activated or repressed. Recently, the product of the proto-oncogene jun has been identified as the transcription factor AP-1, whereas nuclear oncoproteins fos and myc have been implicated in transcriptional transregulation of several promoters. Furthermore, the products of the fos and jun proto-oncogenes are associated in some transcription complexes. Although the nature of the association is unclear, the two proteins co-immunoprecipitate with fos antibodies in nuclear extracts. Here, we report studies that demonstrate that the fos protein directly modulates jun function by means of a heterodimer of fos and jun proteins. The fos 'leucine zipper' domain is necessary for the DNA binding of the heterodimer; a distinct domain, localized in the C-terminal region of the fos protein, is responsible for transcriptional regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.