Because gas-exchange measurements during cardiopulmonary exercise testing allow noninvasive measurement of oxygen uptake (Vo2), which is equal to cardiac output (CO) x arteriovenous oxygen content difference [C(a-vDo2),] CO and stroke volume could theoretically be estimated if the C(a-vDo2) increased in a predictable fashion as a function of % maximum Vo2 (Vo2max) during exercise. To investigate the behavior of C(a-vDo2) during progressively increasing ramp pattern cycle ergometry exercise, 5 healthy subjects performed 10 studies to exhaustion while arterial and mixed venous blood were sampled. Samples were analyzed for blood gases (pH, Pco2, Po2) and oxyhemoglobin and hemoglobin concentration with a CO-oximeter. The C(a-vDo2) (ml/100 ml) could be estimated with a linear regression [C(a-vDo2) = 5.72 + 0.105 x % Vo2max; r = 0.94]. The CO estimated from the C(a-vDo2) by using the above linear regression was well correlated with the CO determined by the direct Fick method (r = 0.96). The coefficient of variation of the estimated CO was small (7-9%) between the lactic acidosis threshold and peak Vo2. The behavior of C(a-vDo2), as related to peak Vo2, was similar regardless of cardiac function compared with similar measurements from studies in the literature performed in normal and congestive heart failure patients. In summary, CO and stroke volume can be estimated during progressive work rate exercise testing from measured Vo2 (in normal subjects and patients with congestive heart failure), and the resultant linear regression equation provides a good estimate of C(a-vDo2).
Exercise training resulted in a substantial improvement in aerobic function while immune indices were essentially unchanged. Quality of life markers improved significantly with exercise. Exercise training is safe and effective in this patient group and should be promoted for HIV+ patients.
The slow rise in O2 uptake (VO2), which has been shown to be linearly correlated with the increase in lactate concentration during heavy constant work rate exercise, led us to investigate the role of H+ from lactic acid in facilitating oxyhemoglobin (O2Hb) dissociation. We measured femoral venous PO2, O2Hb saturation, pH, PCO2, lactate, and standard HCO3- during increasing work rate and two constant work rate cycle ergometer exercise tests [below and above the lactic acidosis threshold (LAT)] in two groups of five healthy subjects. Mean end-exercise femoral vein blood and VO2 values for the below- and above-LAT square waves and the increasing work rate protocol were, respectively, PO2 of 19.8 +/- 2.1 (SD), 18.8 +/- 4.7, and 19.8 +/- 3.3 Torr; O2 saturation of 22.5 +/- 4.1, 13.8 +/- 4.2, and 18.5 +/- 6.3%; pH of 7.26 +/- 0.01, 7.02 +/- 0.11, and 7.09 +/- 0.07; lactate of 1.9 +/- 0.9, 11.0 +/- 3.8, and 8.3 +/- 2.9 mmol/l; and VO2 of 1.77 +/- 0.24, 3.36 +/- 0.4, and 3.91 +/- 0.68 l/min. End-exercise femoral vein PO2 did not differ statistically for the three protocols, whereas O2Hb saturation continued to decrease for work rates above LAT. We conclude that decreasing capillary PO2 accounted for most of the O2Hb dissociation during below-LAT exercise and that acidification of muscle capillary blood due to lactic acidosis accounted for virtually all of the O2Hb dissociation above LAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.