Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Waveform (output least squares) inversion of seismic reflection data can reconstruct remarkably detailed models of subsurface structure, and take into account essentially any physics of seismic wave propagation that can be modeled. However the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long-scale velocity structure. Migration velocity analysis, on the other hand, is based on the Born approximation but is capable of correcting substantially erroneous initial velocities. Appropriate choice of objective (differential semblance) turns migration velocity analysis into an optimization problem, for which Newton-like methods exhibit little tendency to stagnate at nonglobal minima. The extended modeling concept links these two apparently unrelated approaches to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized (single scattering, Born) waveform inversion problem. Extended modeling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests that this new approach to nonlinear waveform inversion may combine the global convergence of velocity analysis with the physical fidelity of least squares.
Differential semblance optimization (DSO) is an approach to inversion of reflection seismograms which avoids the severe convergence difficulties associated with nonlinear least‐squares inversion. The method exploits both moveout and amplitude characteristics of reflections. We have implemented a version appropriate to plane‐wave (p‐tau) seismograms and layered constant‐density acoustic earth models. Theoretical and numerical analyses of this version of DSO indicate that stable and reasonably accurate estimates of both velocity trend and reflectivity can be derived. To test DSO further, we applied it to a marine data set from the Gulf of Mexico, where the method produced results which compare favorably to well‐log information. The method can be extended to incorporate laterally heterogeneous velocity models.
Public reporttttg botidett forthte coilectiort ofinormttottot is estimatted to atveroge I ltotttpet tespoitse, intclutding the totte tot retvtewintg tttstntcttotts, searchintg existing dato sotuces, gatltetittgard ttainttainottg tite data tteeded, qttdcoiitplettttigttdrtevitextitg tlitecoilectiottiofitttfotmoitiott, Settd cottottettts tegatdittg tltts btttdett estttttte ot oty othter aspect 0 Experiments show that the new method also yields higher accuracy in the modeling of Q than e.g., the Pad6 approximant method (Day and Minster, 1984).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.