Boss is an autonomous vehicle that uses on-board sensors (global positioning system, lasers, radars, and cameras) to track other vehicles, detect static obstacles, and localize itself relative to a road model. A three-layer planning system combines mission, behavioral, and motion planning to drive in urban environments. The mission planning layer considers which street to take to achieve a mission goal. The behavioral layer determines when to change lanes and precedence at intersections and performs error recovery maneuvers. The motion planning layer selects actions to avoid obstacles while making progress toward local goals. The system was developed from the ground up to address the requirements of the DARPA Urban Challenge using a spiral system development process with a heavy emphasis on regular, regressive system testing. During the National Qualification Event and the 85-km Urban Challenge Final Event, Boss demonstrated some of its capabilities, qualifying first and winning the challenge. C 2008 Wiley Periodicals, Inc.
Boss is an autonomous vehicle that uses on-board sensors (global positioning system, lasers, radars, and cameras) to track other vehicles, detect static obstacles, and localize itself relative to a road model. A three-layer planning system combines mission, behavioral, and motion planning to drive in urban environments. The mission planning layer considers which street to take to achieve a mission goal. The behavioral layer determines when to change lanes and precedence at intersections and performs error recovery maneuvers. The motion planning layer selects actions to avoid obstacles while making progress toward local goals. The system was developed from the ground up to address the requirements of the DARPA Urban Challenge using a spiral system development process with a heavy emphasis on regular, regressive system testing. During the National Qualification Event and the 85-km Urban Challenge Final Event, Boss demonstrated some of its capabilities, qualifying first and winning the challenge. C 2008 Wiley Periodicals, Inc.
This article presents a robust approach to navigating at high speed across desert terrain. A central theme of this approach is the combination of simple ideas and components to build a capable and robust system. A pair of robots were developed, which completed a 212 km Grand Challenge desert race in approximately 7 h. A pathcentric navigation system uses a combination of LIDAR and RADAR based perception sensors to traverse trails and avoid obstacles at speeds up to 15 m/s. The onboard navigation system leverages a human-based preplanning system to improve reliability and robustness. The robots have been extensively tested, traversing over 3500 km of desert trails prior to completing the challenge. This article describes the mechanisms, algorithms, and testing methods used to achieve this performance.
We describe briefly the properties of the recently completed Southern African Large Telescope (SALT), along with its first light imager SALTICAM. Using this instrument, we present 4.3 h of high‐speed unfiltered photometric observations of the eclipsing polar SDSS J015543.40+002807.2 with time‐resolution as short as 112 ms, the highest‐quality observations of this kind of any polar to date. The system was observed during its high‐luminosity state. Two accreting poles are clearly seen in the eclipse light curve. The binary system parameters have been constrained: the white dwarf mass is at the low end of the range expected for cataclysmic variables. Correlations between the positions of the accretion regions on or near the surface of the white dwarf and the binary system parameters were established. The sizes of the accretion regions and their relative movement from eclipse to eclipse were estimated: they are typically 4°–7° depending on the mass of the white dwarf. The potential of these observations will only fully be realized when low‐state data of the same kind are obtained and the contact phases of the eclipse of the white dwarf are measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.