The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization. Each mRNA displayed a unique distribution, ranging from ubiquitous (alpha 1 mRNA) to narrowly confined (alpha 6 mRNA was present only in cerebellar granule cells). Some neuronal populations coexpressed large numbers of subunit mRNAs, whereas in others only a few GABAA receptor-specific mRNAs were found. Neocortex, hippocampus, and caudate-putamen displayed complex expression patterns, and these areas probably contain a large diversity of GABAA receptors. In many areas, a consistent coexpression was observed for alpha 1 and beta 2 mRNAs, which often colocalized with gamma 2 mRNA. The alpha 1 beta 2 combination was abundant in olfactory bulb, globus pallidus, inferior colliculus, substantia nigra pars reticulata, globus pallidus, zona incerta, subthalamic nucleus, medial septum, and cerebellum. Colocalization was also apparent for the alpha 2 and beta 3 mRNAs, and these predominated in areas such as amygdala and hypothalamus. The alpha 3 mRNA occurred in layers V and VI of neocortex and in the reticular thalamic nucleus. In much of the forebrain, with the exception of hippocampal pyramidal cells, the alpha 4 and delta transcripts appeared to codistribute. In thalamic nuclei, the only abundant GABAA receptor mRNAs were those of alpha 1, alpha 4, beta 2, and delta. In the medial geniculate thalamic nucleus, alpha 1, alpha 4, beta 2, delta, and gamma 3 mRNAs were the principal GABAA receptor transcripts. The alpha 5 and beta 1 mRNAs generally colocalized and may encode predominantly hippocampal forms of the GABAA receptor. These anatomical observations support the hypothesis that alpha 1 beta 2 gamma 2 receptors are responsible for benzodiazepine I (BZ I) binding, whereas receptors containing alpha 2, alpha 3, and alpha 5 contribute to subtypes of the BZ II site. Based on significant mismatches between alpha 4/delta and gamma mRNAs, we suggest that in vivo, the alpha 4 subunit contributes to GABAA receptors that lack BZ modulation.
The embryonic and postnatal expression of 13 GABAA receptor subunit genes in the rat CNS was studied by in situ hybridization. Each transcript exhibited a unique regional and temporal developmental expression profile. For example, in both embryonic and early postnatal cortex and thalamus, expression of the alpha 2, alpha 3, alpha 5, and beta 3 mRNAs was pronounced. In particular, the alpha 5 gene expression underwent a prominent peak in early brain. Subsequently, the thalamocortical expression of these four genes substantially diminished and was superseded in the adult by the alpha 1, alpha 4, beta 2, and delta subunit mRNAs. Similarly, gamma 1 and gamma 3 gene expression also dropped markedly during development, their initial stronger expression being restricted to relatively few structures. In contrast, gamma 2 gene expression was widespread and mostly remained constant with increasing age. The medial septum and globus pallidus were regions expressing few subunits in both early postnatal and adult stages, allowing clear developmental combinatorial changes to be inferred (alpha 2/alpha 3 beta 2 gamma 2 to alpha 1 beta 2 gamma 2, alpha 2/alpha 3 beta 2 gamma 1 to alpha 1 beta 2 gamma 1/gamma 2, respectively). In contrast, cerebellar Purkinje cells exhibited no developmental switch, expressing only the alpha 1, beta 2, beta 3, and gamma 2 mRNAs from birth to adult. Certain GABAA transcripts were also detected in germinal zones (e.g., beta 1, beta 3, gamma 1) and in embryonic peripheral tissues such as dorsal root ganglia (e.g., alpha 2, alpha 3, beta 3, gamma 2) and intestine (gamma 3). Some parallels in regional and temporal CNS expression were noted (e.g., alpha 1 beta 2, alpha 2 beta 3, alpha 4/alpha 6 delta), whereas the alpha 5 and beta 1 regional mRNA expressions converted over time. The changes of GABAA receptor subunit gene expression suggest a molecular explanation for earlier observations on changing ligand binding affinities. Thus, the composition, and presumably properties, of embryonic/early postnatal rat GABAA receptors differs markedly from those expressed in the adult brain.
In the central nervous system (CNS), the principal mediators of fast synaptic excitatory neurotransmission are L-glutamate-gated ion channels that are responsive to the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). In each member of a family of four abundant AMPA receptors, a small segment preceding the predicted fourth transmembrane region has been shown to exist in two versions with different amino acid sequences. These modules, designated "flip" and "flop," are encoded by adjacent exons of the receptor genes and impart different pharmacological and kinetic properties on currents evoked by L-glutamate or AMPA, but not those evoked by kainate. For each receptor, the alternatively spliced messenger RNAs show distinct expression patterns in rat brain, particularly in the CA1 and CA3 fields of the hippocampus. These results identify a switch in the molecular and functional properties of glutamate receptors operated by alternative splicing.
Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library. In situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain. Functional expression of the cDNAs in cultured mammalian cells generated receptors displaying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective binding pharmacology (AMPA = quisqualate greater than glutamate greater than kainate) as well as cation channels gated by glutamate, AMPA, and kainate and blocked by 6,7-dinitroquinoxaline-2,3-dione (CNQX).
Many neurons receive a continuous, or 'tonic', synaptic input, which increases their membrane conductance, and so modifies the spatial and temporal integration of excitatory signals. In cerebellar granule cells, although the frequency of inhibitory synaptic currents is relatively low, the spillover of synaptically released GABA (gamma-aminobutyric acid) gives rise to a persistent conductance mediated by the GABA A receptor that also modifies the excitability of granule cells. Here we show that this tonic conductance is absent in granule cells that lack the alpha6 and delta-subunits of the GABAA receptor. The response of these granule cells to excitatory synaptic input remains unaltered, owing to an increase in a 'leak' conductance, which is present at rest, with properties characteristic of the two-pore-domain K+ channel TASK-1 (refs 9,10,11,12). Our results highlight the importance of tonic inhibition mediated by GABAA receptors, loss of which triggers a form of homeostatic plasticity leading to a change in the magnitude of a voltage-independent K + conductance that maintains normal neuronal behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.