The primary advantage of moderately superheated bubble chamber detectors is their simultaneous sensitivity to nuclear recoils from WIMP dark matter and insensitivity to electron recoil backgrounds. A comprehensive analysis of PICO gamma calibration data demonstrates for the first time that electron recoils in C3F8 scale in accordance with a new nucleation mechanism, rather than one driven by a hot-spike as previously supposed. Using this semi-empirical model, bubble chamber nucleation thresholds may be tuned to be sensitive to lower energy nuclear recoils while maintaining excellent electron recoil rejection. The PICO-40L detector will exploit this model to achieve thermodynamic thresholds as low as 2.8 keV while being dominated by single-scatter events from coherent elastic neutrino-nucleus scattering of solar neutrinos. In one year of operation, PICO-40L can improve existing leading limits from PICO on spin-dependent WIMP-proton coupling by nearly an order of magnitude for WIMP masses greater than 3 GeV c −2 and will have the ability to surpass all existing non-xenon bounds on spin-independent WIMP-nucleon coupling for WIMP masses from 3 to 40 GeV c −2 .
Cosmic-ray muons detected by deep underground and underwater detectors have served as an information source on the high-energy cosmic-ray spectrum and hadronic interactions in air showers for almost a century. The theoretical interest in underground muons has nearly faded away because space-borne experiments probe the cosmic-ray spectrum more directly, and accelerators provide precise measurements of hadron yields. However, underground muons probe unique hadron interaction energies and phase space, which are still inaccessible to present accelerator experiments. The cosmic-ray nucleon energies reach the hundred-TeV and PeV ranges, which are barely accessible with space-borne experiments. Our new calculation combines two modern computational tools: mceq for surface muon fluxes and proposal for underground transport. We demonstrate excellent agreement with measurements of cosmic-ray muon intensities underground within estimated errors. Beyond that, the precision of historical data turns out to be significantly smaller than our error estimates. This result shows that the sources of high-energy atmospheric lepton flux uncertainties at the surface or underground can be significantly constrained without taking more data or building new detectors. The reduction of uncertainties can be expected to impact data analyses at large-volume neutrino telescopes and be used for the design of future ton-scale direct dark matter detectors.
We present a new efficient calculation to propagate cosmic ray muons from the surface of the Earth to deep underground laboratories, allowing us to look at the physics and performance of various models of high-energy cosmic rays. The evolution of cosmic rays in the Earth's atmosphere is computed with MCEq (Matrix Cascade Equation), taking into account different combinations of primary and hadronic interaction models in order to calculate the muon flux at the surface. The latter serves as an input for the Monte Carlo code PROPOSAL (Propagator with Optimal Precision and Optimised Speed for All Leptons) to propagate the muons through the rock. A forward prediction for underground muon spectra at different slant depths, including the muon survival probabilities and underground energy spectra, is calculated with very high precision. The reliability of this state-of-the-art calculation was achieved by comparing the results obtained for the vertical muon intensity and total muon flux with the measured data at various underground sites with both flat overburdens and mountains. The implications of the results as well as the seasonal variation of the muon flux will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.