HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
Background: Muscle-invasive bladder cancer (MIBC) is a molecularly diverse disease with heterogeneous clinical outcomes. Several molecular classifications have been proposed, but the diversity of their subtype sets impedes their clinical application. Objective: To achieve an international consensus on MIBC molecular subtypes that reconciles the published classification schemes. Design, setting, and participants: We used 1750 MIBC transcriptomic profiles from 16 published datasets and two additional cohorts. Outcome measurements and statistical analysis: We performed a network-based analysis of six independent MIBC classification systems to identify a consensus set of molecular classes. Association with survival was assessed using multivariable Cox models. Results and limitations: We report the results of an international effort to reach a consensus on MIBC molecular subtypes. We identified a consensus set of six molecular classes: luminal papillary (24%), luminal nonspecified (8%), luminal unstable (15%), stroma-rich (15%), basal/squamous (35%), and neuroendocrine-like (3%). These consensus classes differ regarding underlying oncogenic mechanisms, infiltration by immune and stromal cells, and histological and clinical characteristics, including outcomes. We provide a single-sample classifier that assigns a consensus class label to a tumor sample’s transcriptome. Limitations of the work are retrospective clinical data collection and a lack of complete information regarding patient treatment. Conclusions: This consensus system offers a robust framework that will enable testing and validation of predictive biomarkers in future prospective clinical trials. Patient summary: Bladder cancers are heterogeneous at the molecular level, and scientists have proposed several classifications into sets of molecular classes. While these classifications may be useful to stratify patients for prognosis or response to treatment, a consensus classification would facilitate the clinical use of molecular classes. Conducted by multidisciplinary expert teams in the field, this study proposes such a consensus and provides a tool for applying the consensus classification in the clinical setting.
Loss of the INK4a/ARF/INK4b locus on chromosome 9p21 is among the most frequent cytogenetic events in human cancer. The products of the locus--p15(INK4b), p16(INK4a), and ARF--play widespread and independent roles in tumor suppression. Recent data also suggest that expression of p16(INK4a) induces an age-dependent decrease in the proliferative capacity of certain tissue-specific stem cells and unipotent progenitors. Here, we discuss the regulation and role of p16(INK4a), ARF, and p15(INK4b) in cancer and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.