BackgroundContext-specific evidence of the spectrum of type 2 diabetes (T2D) burden is essential for setting priorities and designing interventions to reduce associated morbidity and mortality. However, there are currently limited data on the burden of T2D complications and comorbidity in sub-Saharan Africa (SSA).MethodsT2D complications and comorbidities were assessed in 2,784 participants with diabetes enrolled from tertiary health centres and contextualised in 3,209 individuals without diabetes in Nigeria, Ghana and Kenya. T2D complications and comorbidities evaluated included cardiometabolic, ocular, neurological and renal characteristics.FindingsThe most common complications/comorbidities among the T2D participants were hypertension (71%; 95% CI 69–73), hyperlipidaemia (34%; 95% CI 32–36), and obesity (27%; 95% CI 25–29). Additionally, the prevalence of cataracts was 32% (95% CI 30–35), diabetic retinopathy 15% (95% CI 13–17), impaired renal function 13% (95% CI 12–15), and erectile dysfunction (in men) 35% (95% CI 32–38). T2D population-attributable fraction for these comorbidities ranged between 6 and 64%.InterpretationThe burden of diabetes complications and comorbidity is substantial in SSA highlighting the urgent need for innovative public health strategies that prioritise promotion of healthy lifestyles for prevention and early detection of T2D. Also needed are strategies to strengthen health care system capacities to provide treatment and care for diabetes complications.
Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10 −9 ). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations.
Genome wide association studies (GWAS) for type 2 diabetes (T2D) undertaken in European and Asian ancestry populations have yielded dozens of robustly associated loci. However, the genomics of T2D remains largely understudied in sub-Saharan Africa (SSA), where rates of T2D are increasing dramatically and where the environmental background is quite different than in these previous studies. Here, we evaluate 106 reported T2D GWAS loci in continental Africans. We tested each of these SNPs, and SNPs in linkage disequilibrium (LD) with these index SNPs, for an association with T2D in order to assess transferability and to fine map the loci leveraging the generally reduced LD of African genomes. The study included 1775 unrelated Africans (1035 T2D cases, 740 controls; mean age 54 years; 59% female) enrolled in Nigeria, Ghana, and Kenya as part of the Africa America Diabetes Mellitus (AADM) study. All samples were genotyped on the Affymetrix Axiom PanAFR SNP array. Forty-one of the tested loci showed transferability to this African sample (p < 0.05, same direction of effect), 11 at the exact reported SNP and 30 others at SNPs in LD with the reported SNP (after adjustment for the number of tested SNPs). TCF7L2 SNP rs7903146 was the most significant locus in this study (p = 1.61 × 10−8). Most of the loci that showed transferability were successfully fine-mapped, i.e., localized to smaller haplotypes than in the original reports. The findings indicate that the genetic architecture of T2D in SSA is characterized by several risk loci shared with non-African ancestral populations and that data from African populations may facilitate fine mapping of risk loci. The study provides an important resource for meta-analysis of African ancestry populations and transferability of novel loci.
BackgroundDiabetes and depression are both chronic debilitating conditions, and their coexistence has been associated with adverse outcomes. In this study, we investigated the association between glycaemic control and depression in type 2 diabetes (T2DM) patients attending a tertiary healthcare facility in Ghana.MethodologyIn a cross-sectional study design, Patient Health Questionnare-9 (PHQ-9) was used to assess depression in 400 T2DM, aged 30–65 years. Anthropometric characteristics and blood pressure were measured. Venous blood was collected to measure the levels of glycated haemoglobin (HbA1c).ResultsThe prevalence of depression was 31.3% among T2DM patients. Female gender, being unmarried, frequent intake of alcohol, previous smoking status and insulin use were associated with increased odds of depression, whereas being educated above basic school level was associated with a decreased odds of depression. In a multivariable logistic regression model, being unmarried and poor glycaemic control were associated with an increase in odds of depression after adjusting for age, gender, and social factors. The association between depression and glycaemic control was attenuated when clinical factors were introduced into the model.ConclusionIn our study population, we found that depression is common among Ghanaians with T2DM, and not associated with poor glycaemic control in a fully multivariable-adjusted model.
Background Malaria is more common in pregnant than in non-pregnant Nigerian women, and is associated with small birth size and the attendant short- and long-term health risks. The influence of malaria on maternal metabolic status in pregnancy and in cord blood and how this relates to birth size has not been studied. The study objective was to define relationships between maternal and cord serum metabolic markers, maternal malaria status and birth size. Methods During pregnancy, anthropometric measurements, blood film for malaria parasites and assays for lipids, glucose, insulin and TNF were obtained from 467 mothers and these analytes and insulin-like growth factor-I (IGF-I) were obtained from cord blood of 187 babies. Results Overall prevalence of maternal malaria was 52%, associated with younger age, anaemia and smaller infant birth size. Mothers with malaria had significantly lower cholesterol (total, HDL and LDL) and higher TNF, but no difference in triglyceride. In contrast, there was no effect of maternal malaria on cord blood lipids, but the median (range) cord IGF-I was significantly lower in babies whose mothers had malaria: 60.4 (24,145)μg/L, versus no malaria: 76.5 (24, 150)μg/L, p = 0.03. On regression analysis, the key determinants of birth weight included maternal total cholesterol, malarial status and cord insulin and IGF-I. Conclusions Malaria in pregnancy was common and associated with reduced birth size, lower maternal lipids and higher TNF. In the setting of endemic malaria, maternal total cholesterol during pregnancy and cord blood insulin and IGF-I levels are potential biomarkers of foetal growth and birth size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.