SummaryTwo full-genome sequences of porcine circovirus type 3 (PCV3) are reported. The genomes were recovered from pooled serum samples from sows who had just deliv-
Pigeon circovirus (PiCV) is taxonomically classified as a member of the Circovirus genus, family Circoviridae. The virus contains a single stranded DNA genome of approximately 2 kb, with minor length variations among different isolates. The occurrence of PiCV infections in pigeons (Columba livia) has been documented worldwide over the past 20 years; however, in Brazil there were still no reports on PiCV detection. This study identifies seven PiCV genomes recovered from domestic pigeons of South Brazil through high-throughput sequencing and shows a high frequency of PiCV infection, through quantitative real-time PCR. Phylogenetic classification was performed by maximum likelihood analysis of the full genomes, ORF V1 (Rep) and ORF C1 (Cap). The results show that either full genome or Cap based analysis allowed PiCV classification into five major clades (groups A to E), where Brazilian sequences were classified as A, C or D. Recombination analyses were carried out with Simplot and RDP4 and the results show that both Rep and Cap ORFs contain several recombination hotspots, pointing to an important role for such events in PiCV evolution.
The emergence of high consequence animal diseases usually requires managing significant mortality. A desirable aspect of any carcass management method is the ability to contain and inactivate the target pathogen. The above‐ground burial (AGB) technique was recently developed and proposed as an alternative carcass management method. Here, we investigate the tenacity of swinepox virus (SwPV), as a surrogate model for African swine fever virus (ASFV) in swine carcasses during the AGB process. For this, SwPV was inoculated intrafemorally in 90 adult swine carcasses, which were subsequently disposed under AGB conditions. Bone marrow samples were recovered periodically throughout 12 months and virus viability was assessed by virus isolation (VI), whereas the presence of SwPV DNA was evaluated by quantitative polymerase chain reaction (qPCR). Additionally, an in vitro study assessed the inactivation rate of SwPV, Senecavirus A (SVA), and bovine viral diarrhoea virus (BVDV). Viral suspensions were mixed with bone marrow material and maintained at 21–23°C for 30 days. Virus viability was assessed by VI and viral titration. In the field study, SwPV remained viable only in 11 (55%) bone marrow samples collected on day 7; only viral DNA (and not infectivity) was detected afterwards. SwPV inactivation was estimated to have occurred by day 11. The in vitro testing revealed a variable tenacity of the studied viruses. The viability period was estimated in 28, 80, and 118 days, respectively, for BVDV, SwPV, and SVA. Overall, these findings indicate that the AGB technique was effective in quickly inactivating SwPV. Additionally, the SwPV inactivation rate is comparable to ASFV under field studies and poses a potential model for preliminary ASFV inactivation studies with reduced biosecurity requirements. Moreover, this study contributes to understanding the inactivation kinetics of viruses under specific conditions, which is critical when designing and applying countermeasures in case of biosecurity breaches in sites managing animal mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.