We deposited homogeneous, thin, yellow-colored films of chitosan (Chi)-N,N-Dimethyl-4-(2-pyridylazo)aniline (PADA) dye from an acid Chi–PADA solution by spin-coating on glass substrates. We characterized Chi, PADA, and Chi–PADA films by ATR–FTIR spectroscopy, which revealed a slight shift of 3170 and 3268 cm−1 bands, indicating H-bonding between the chitosan hydroxyl (OH) group and the amine (N) of the PADA pyridine ring. Based on these analyses, it was possible to determine the efficiency of the hydrogen bonds to form a Surface Relief Grating (SRG) on azo-polymer thin film. Moreover, we performed UV–VIS spectroscopy analysis of this film, which showed a broad band extending from 400 to 700 nm, with the maximum occurring at 428 nm. Therefore, we selected, within the absorption band, the 532 nm green laser wavelength to irradiate the azo-polymer films at room temperature. For the first time, natural polymer derivative and dye sample Chi–PADA thin films showed unique photoresponsive behavior under irradiation with two interfering laser beams. This permitted us to generate surface inscription patterning known as an SRG, which we confirmed by atomic force microscopy (AFM) and for which we determined a grating depth up to 50 nm. The present study opens the new possibility of using natural polymer-dye thin films.
Nanocomposite polymer electrolytes (NPEs) were synthesized using sodium alginate (Alg) and either sodium (SCa-3-Na+)- or lithium (SCa-3-Li+)-modified montmorillonite clays. The samples were characterized by structural, optical, and electrical properties. SCa-3-Na+ and SCa-3-Li+ clays’ X-ray structural analyses revealed peaks at 2θ = 7.2° and 6.7° that corresponded to the interlamellar distances of 12.3 and 12.8 Å, respectively. Alg-based NPEs X-ray diffractograms showed exfoliated structures for samples with low clay percentages. The increase of clay content promoted the formation of intercalated structures. Electrochemical Impedance Spectroscopy revealed that Alg-based NPEs with 5 wt% of SCa-3-Na+ clay presented the highest conductivity of 1.96 × 10−2 S/cm2, and Alg with 10 wt% of SCa-3-Li+ showed conductivity of 1.30 × 10−2 S/cm2, both measured at 70 °C. From UV-Vis spectroscopy, it was possible to infer that increasing concentration of clay promoted a decrease of the samples’ transmittance and, consequently, an increase of their reflectance.
The present paper shows the results of nanocomposite polymer electrolytes (SPEs) of montmorillonite (MMT; Na+SYN-1) and gellan gum obtained by the solution casting method. The membrane samples were characterized by ATR-FTIR, time-domain nuclear magnetic resonance (TD-NMR), and scanning electron microscopy (SEM). Then, two samples were chosen and applied in small electrochromic devices (ECDs). The ATR-FTIR revealed shifts in bands of acetate and glycosidic bonds at 1032 and 1611 cm−1, respectively, indicating an interaction between the gellan gum and Na+SYN-1. The spin–lattice relaxation time of the proton nuclei (T1) suggests the poor dispersion of MMT in the matrix, especially above 20 wt.%. However, SEM pictures pointed to a more homogeneous surface of the nanocomposite containing 40 wt.% Na+SYN-1 when compared to the sample without clay. NPEs with 10 and 40 wt.% Na+SYN-1 were applied in ECDs, and the voltammograms showed a decrease in anodic and cathodic peaks after 2519 chronocoulometric cycles for the sample with 10 wt.% Na+SYN-1 and after 420 cycles for the sample with 40 wt.% Na+SYN-1. There was also a decrease in the charge density in both ECDs and an oscillating difference in transmittance between the colored/discolored states during the chronocoulometric cycles of the ECD with GG-MMT10. Further studies may reveal more property improvements in gellan gum nanocomposites.
Nanocomposite polymer electrolytes (NPEs) were obtained using gellan gum (GG) and 1 to 40 wt.% of montmorillonite (Na+SYN-1) clay. The NPEs were crosslinked with formaldehyde, plasticized with glycerol, and contained LiClO4. The samples were characterized by impedance spectroscopy, thermal analyses (TGA and DSC), UV-vis transmittance and reflectance, X-ray diffraction (XRD), and continuous-wave electron paramagnetic resonance (CW-EPR). The NPEs of GG and 40 wt.% LiClO4 showed the highest conductivity of 2.14 × 10−6 and 3.10 × 10−4 S/cm at 30 and 80 °C, respectively. The samples with 10 wt.% Na+SYN-1 had a conductivity of 1.86 × 10−5 and 3.74 × 10−4 S/cm at 30 and 80 °C, respectively. TGA analyses revealed that the samples are thermally stable up to 190 °C and this did not change with clay addition. The transparency of the samples decreased with the increase in the clay content and at the same time their reflectance increased. Finally, CW-EPR was performed to identify the coordination environment of Cu2+ ions in the GG NPEs. The samples doped with the lowest copper concentration exhibit the typical EPR spectra due to isolated Cu2+ ions in axially distorted sites. At high concentrations, the spectra become isotropic because of dipolar and exchange magnetic effects. In summary, GG/clay NPEs presented good ionic conductivity results, which qualifies them for electrochemical device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.