BackgroundThe anthropogenic modification of trophic pathways is seemingly prompting the increase of jellyfish populations at the expense of planktivorous fishes. However, gross generalizations are often made because the most basic aspects of trophic ecology and the diverse interactions of jellyfish with fishes remain poorly described. Here we inquire on the dynamics of food consumption of the medusoid stage of the scyphozoan jellyfish Stomolophus meleagris and characterize the traits and diversity of its symbiotic community.MethodsS. meleagris and their associated fauna were sampled in surface waters between November 2015 and April 2017 in Málaga Bay, an estuarine system at the Colombian Pacific. Stomach contents of medusae were examined and changes in prey composition and abundance over time analysed using a multivariate approach. The associated fauna was identified and the relationship between the size of medusae and the size those organisms tested using least-square fitting procedures.ResultsThe presence of S. meleagris medusa in surface waters was seasonal. The gut contents analysis revealed that algae, copepods and fish early life stages were the more abundant items, and PERMANOVA analysis showed that the diet differed within the seasons (P(perm) = 0.001) but not between seasons (P(perm) = 0.134). The majority of the collected medusae (50.4%) were associated with individuals of 11 symbiotic species, 95.3% of them fishes, 3.1% crustaceans and 1.6% molluscs. Therefore, this study reports 10 previously unknown associations. The bell diameter of S. meleagris was positively related to the body sizes of their symbionts. However, a stronger fit was observed when the size relationship between S. meleagris and the fish Hemicaranx zelotes was modelled.DiscussionThe occurrence of S. meleagris was highly seasonal, and the observed patterns of mean body size through the seasons suggested the arrival of adult medusae to the estuary from adjacent waters. The diet of S. meleagris in the study area showed differences with previous reports, chiefly because of the abundance of algae that are seemingly ingested but not digested. The low number of zooplanktonic items in gut contents suggest the contribution of alternative food sources not easily identifiable. The observed changes in the composition of food in the guts probably reflect seasonal changes in the availability of prey items. The regular pattern in the distribution of symbionts among medusae (a single symbiont per host) and the positive host-symbiont size relationship reflects antagonistic intraspecific and interspecific behaviour of the symbiont. This strongly suggest that medusa represent an “economically defendable resource” that potentially increases the survival and recruitment of the symbionts to the adult population. We argue that, if this outcome of the symbiotic association can be proven, scyphozoan jellyfish can be regarded as floating nurseries.
The anthropogenic modification of basal trophic pathways is seemingly prompting the increase of jellyfish populations at the expense of planktivorous fishes. However, gross generalizations are often made because the most basic aspects of trophic ecology and the diverse interactions of jellyfish with fishes remain poorly described. Here we inquire on the dynamics of food consumption of the medusoid stage of the scyphozoan jellyfish Stomolophus meleagris and characterize the traits and diversity of its symbiotic community. S. meleagris and their associated fauna were sampled in surface waters between November 2015 and April 2017 in Málaga Bay, an estuarine system at the Colombian Pacific. Stomach contents of medusae were examined and changes in prey composition and abundance over time analysed using a multivariate approach. The associated fauna was identified and the relationship between the size of medusae and the size their symbionts tested using least-square fitting procedures. The presence of S. meleagris medusa in surface waters was seasonal. The gut contents analysis revealed that algae, copepods and fish early life stages were the more abundant items, and PERMANOVA analysis showed that the diet differed within the seasons (P (perm) =0.001) but not between seasons (P (perm) =0.134). The majority of the collected medusae (50.4 %) were associated to individuals of 11 symbiotic species, 95.3% of them fishes, 3.1% crustaceans and 1.6% molluscs. Thereby, this study reports 10 previously unknown associations. The bell diameter of S. meleagris was positively related to the body sizes of their symbionts.However, a stronger fit was observed when the size relationship between S. meleagris and the fish Hemicaranx zelotes was modelled. The ocurrence of S. meleagris was highly seasonal, and the observed patterns of mean body size through the seasons suggested the arrival of adult medusae to the estuary from adjacent waters. The diet of S. meleagris in the study area showed differences with previous reports, chiefly because of the consistent abundance of algae that are seemingly ingested but not digested. The low number of Background. The anthropogenic modification of basal trophic pathways is seemingly prompting the increase of jellyfish populations at the expense of planktivorous fishes. However, gross generalizations are often made because the most basic aspects of trophic ecology and the diverse interactions of jellyfish with fishes remain poorly described. Here we inquire on the dynamics of food consumption of the medusoid stage of the scyphozoan jellyfish Stomolophus meleagris and characterize the traits and diversity of its symbiotic community.
The anthropogenic modification of basal trophic pathways is seemingly prompting the increase of jellyfish populations at the expense of planktivorous fishes. However, gross generalizations are often made because the most basic aspects of trophic ecology and the diverse interactions of jellyfish with fishes remain poorly described. Here we inquire on the dynamics of food consumption of the medusoid stage of the scyphozoan jellyfish Stomolophus meleagris and characterize the traits and diversity of its symbiotic community. S. meleagris and their associated fauna were sampled in surface waters between November 2015 and April 2017 in Málaga Bay, an estuarine system at the Colombian Pacific. Stomach contents of medusae were examined and changes in prey composition and abundance over time analysed using a multivariate approach. The associated fauna was identified and the relationship between the size of medusae and the size their symbionts tested using least-square fitting procedures. The presence of S. meleagris medusa in surface waters was seasonal. The gut contents analysis revealed that algae, copepods and fish early life stages were the more abundant items, and PERMANOVA analysis showed that the diet differed within the seasons (P (perm) =0.001) but not between seasons (P (perm) =0.134). The majority of the collected medusae (50.4 %) were associated to individuals of 11 symbiotic species, 95.3% of them fishes, 3.1% crustaceans and 1.6% molluscs. Thereby, this study reports 10 previously unknown associations. The bell diameter of S. meleagris was positively related to the body sizes of their symbionts.However, a stronger fit was observed when the size relationship between S. meleagris and the fish Hemicaranx zelotes was modelled. The ocurrence of S. meleagris was highly seasonal, and the observed patterns of mean body size through the seasons suggested the arrival of adult medusae to the estuary from adjacent waters. The diet of S. meleagris in the study area showed differences with previous reports, chiefly because of the consistent abundance of algae that are seemingly ingested but not digested. The low number of Background. The anthropogenic modification of basal trophic pathways is seemingly prompting the increase of jellyfish populations at the expense of planktivorous fishes. However, gross generalizations are often made because the most basic aspects of trophic ecology and the diverse interactions of jellyfish with fishes remain poorly described. Here we inquire on the dynamics of food consumption of the medusoid stage of the scyphozoan jellyfish Stomolophus meleagris and characterize the traits and diversity of its symbiotic community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.