The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (
Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “ Nitrosopumilus maritimus ” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.
Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 μE·m −2 ·s −1 and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments.marine ammonia-oxidizing archaea | ecophysiology | urea utilization
Relative to the atmosphere, much of the aerobic ocean is supersaturated with methane; however, the source of this important greenhouse gas remains enigmatic. Catabolism of methylphosphonic acid by phosphorus-starved marine microbes, with concomitant release of methane, has been suggested to explain this phenomenon, yet methylphosphonate is not a known natural product, nor has it been detected in natural systems. Further, its synthesis from known natural products would require unknown biochemistry. Here we show that the marine archaeon Nitrosopumilus maritimus encodes a pathway for methylphosphonate biosynthesis and that it produces cell-associated methylphosphonate esters. The abundance of a key gene in this pathway in metagenomic datasets suggests that methylphosphonate biosynthesis is relatively common in marine microbes, providing a plausible explanation for the methane paradox.
The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH 3 ) oxidation to nitrite (NO 2 − ) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH 3 oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH 2 OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH 2 OH or an initial oxidation product other than NH 2 OH. We now show through combined physiological and stable isotope tracer analyses that NH 2 OH is both produced and consumed during the oxidation of NH 3 to NO 2 − by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH 2 OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH 3 by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH 2 OH, the archaea possibly catalyzing NH 2 OH oxidation using a novel enzyme complex.M icrobial oxidation of ammonia (NH 3 ) to nitrite (NO 2 − ), the first step in nitrification, plays a central role in the global cycling of nitrogen. Recent studies have established that marine and terrestrial representatives of an abundant group of archaea, now classified as Thaumarchaeota, are autotrophic NH 3 oxidizers (1-5). Despite increasing evidence that ammonia-oxidizing archaea (AOA) generally outnumber ammonia-oxidizing bacteria (AOB), and likely nitrify in most natural environments, very little is known about their physiology or supporting biochemistry (6, 7). Genome sequence analyses have pointed to a unique pathway for NH 3 oxidation, likely using copper as a major redox active metal, and coupled to a variant of the hydroxypropionate/ hydroxybutyrate cycle (8). However, the only genome sequence feature that associates the archaeal pathway for NH 3 oxidation with that of the better characterized AOB is a divergent variant of the ammonia monooxygenase (AMO), which may or may not be a functional equivalent of the bacterial AMO. Thus, the supporting biochemistry of a biogeochemically significant group of microorganisms remains unresolved (8,9).Among the AOB, as represented by the model organism Nitrosomonas europaea, NH 3 is first oxidized to hydroxylamine (NH 2 OH) by AMO, an enzyme composed of three subunits encoded by amoC, amoA, and amoB genes (7). NH 2 OH is subsequently oxidized to NO 2 − by the hydroxylamine oxidoreductase (HAO) (7), a heme-rich enzyme encoded by the hao gene (7). Of the four electrons released from the oxidation of NH 2 OH to NO 2 − , two are transfe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.