Coronavirus disease 2019 (COVID-19) occurred in Wuhan and rapidly spread around the world. Assessing the impact of COVID-19 is the first and foremost concern. The inflection point (IP) and the corresponding cumulative number of infected cases (CNICs) are the two viewpoints that should be jointly considered to differentiate the impact of struggling to fight against COVID-19 (SACOVID). The CNIC data were downloaded from the GitHub website on 23 November 2020. The item response theory model (IRT) was proposed to draw the ogive curve for every province/metropolitan city/area in China. The ipcase-index was determined by multiplying the IP days with the corresponding CNICs. The IRT model was parameterized, and the IP days were determined using the absolute advantage coefficient (AAC). The difference in SACOVID was compared using a forest plot. In the observation study, the top three regions hit severely by COVID-19 were Hong Kong, Shanghai, and Hubei, with IPcase indices of 1744, 723, and 698, respectively, and the top three areas with the most aberrant patterns were Yunnan, Sichuan, and Tianjin, with IP days of 5, 51, and 119, respectively. The difference in IP days was determined (χ2 = 5065666, df = 32, p < 0.001) among areas in China. The IRT model with the AAC is recommended to determine the IP days during the COVID-19 pandemic.
Background Many previous papers have investigated most-cited articles or most productive authors in academics, but few have studied most-cited authors. Two challenges are faced in doing so, one of which is that some different authors will have the same name in the bibliometric data, and the second is that coauthors’ contributions are different in the article byline. No study has dealt with the matter of duplicate names in bibliometric data. Although betweenness centrality (BC) is one of the most popular degrees of density in social network analysis (SNA), few have applied the BC algorithm to interpret a network’s characteristics. A quantitative scheme must be used for calculating weighted author credits and then applying the metrics in comparison. Objective This study aimed to apply the BC algorithm to examine possible identical names in a network and report the most-cited authors for a journal related to international mobile health (mHealth) research. Methods We obtained 676 abstracts from Medline based on the keywords “JMIR mHealth and uHealth” (Journal) on June 30, 2018. The author names, countries/areas, and author-defined keywords were recorded. The BCs were then calculated for the following: (1) the most-cited authors displayed on Google Maps; (2) the geographical distribution of countries/areas for the first author; and (3) the keywords dispersed by BC and related to article topics in comparison on citation indices. Pajek software was used to yield the BC for each entity (or node). Bibliometric indices, including h-, g-, and x-indexes, the mean of core articles on g(Ag)=sum (citations on g-core/publications on g-core), and author impact factor (AIF), were applied. Results We found that the most-cited author was Sherif M Badawy (from the United States), who had published six articles on JMIR mHealth and uHealth with high bibliometric indices (h=3; AIF=8.47; x=4.68; Ag=5.26). We also found that the two countries with the highest BC were the United States and the United Kingdom and that the two keyword clusters of mHealth and telemedicine earned the highest indices in comparison to other counterparts. All visual representations were successfully displayed on Google Maps. Conclusions The most cited authors were selected using the authorship-weighted scheme (AWS), and the keywords of mHealth and telemedicine were more highly cited than other counterparts. The results on Google Maps are novel and unique as knowledge concept maps for understanding the feature of a journal. The research approaches used in this study (ie, BC and AWS) can be applied to other bibliometric analyses in the future.
Background Workplace bullying has been measured in many studies to investigate its effects on mental health issues. However, none have used web-based computerized adaptive testing (CAT) with bully classifications and convolutional neural networks (CNN) for reporting the extent of individual bullying in the workplace. Objective This study aims to build a model using CNN to develop an app for automatic detection and classification of nurse bullying-levels, incorporated with online Rasch computerized adaptive testing, to help assess nurse bullying at an earlier stage. Methods We recruited 960 nurses working in a Taiwan Ch-Mei hospital group to fill out the 22-item Negative Acts Questionnaire-Revised (NAQ-R) in August 2012. The k-mean and the CNN were used as unsupervised and supervised learnings, respectively, for: (1) dividing nurses into three classes (n=918, 29, and 13 with suspicious mild, moderate, and severe extent of being bullied, respectively); and (2) building a bully prediction model to estimate 69 different parameters. Finally, data were separated into training and testing sets in a proportion of 70:30, where the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve [AUC]), along with the accuracy across studies for comparison. An app predicting the respondent bullying-level was developed, involving the model’s 69 estimated parameters and the online Rasch CAT module as a website assessment. Results We observed that: (1) the 22-item model yields higher accuracy rates for three categories, with an accuracy of 94% for the total 960 cases, and accuracies of 99% (AUC 0.99; 95% CI 0.99-1.00) and 83% (AUC 0.94; 95% CI 0.82-0.99) for the lower and upper groups (cutoff points at 49 and 66 points) based on the 947 cases and 42 cases, respectively; and (2) the 700-case training set, with 95% accuracy, predicts the 260-case testing set reaching an accuracy of 97. Thus, a NAQ-R app for nurses that predicts bullying-level was successfully developed and demonstrated in this study. Conclusions The 22-item CNN model, combined with the Rasch online CAT, is recommended for improving the accuracy of the nurse NAQ-R assessment. An app developed for helping nurses self-assess workplace bullying at an early stage is required for application in the future.
Background Burnout (BO), a critical syndrome particularly for nurses in health care settings, substantially affects their physical and psychological status, the institute’s well-being, and indirectly, patient outcomes. However, objectively classifying BO levels has not been defined and noticed in the literature. Objective The aim of this study is to build a model using the convolutional neural network (CNN) to develop an app for automatic detection and classification of nurse BO using the Maslach Burnout Inventory–Human Services Survey (MBI-HSS) to help assess nurse BO at an earlier stage. Methods We recruited 1002 nurses working in a medical center in Taiwan to complete the Chinese version of the 20-item MBI-HSS in August 2016. The k-mean and CNN were used as unsupervised and supervised learnings for dividing nurses into two classes (n=531 and n=471 of suspicious BO+ and BO−, respectively) and building a BO predictive model to estimate 38 parameters. Data were separated into training and testing sets in a proportion 70%:30%, and the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve) across studies for comparison. An app predicting respondent BO was developed involving the model’s 38 estimated parameters for a website assessment. Results We observed that (1) the 20-item model yields a higher accuracy rate (0.95) with an area under the curve of 0.97 (95% CI 0.94-0.95) based on the 1002 cases, (2) the scheme named matching personal response to adapt for the correct classification in model drives the prior model’s predictive accuracy at 100%, (3) the 700-case training set with 0.96 accuracy predicts the 302-case testing set reaching an accuracy of 0.91, and (4) an available MBI-HSS app for nurses predicting BO was successfully developed and demonstrated in this study. Conclusions The 20-item model with the 38 parameters estimated by using CNN for improving the accuracy of nurse BO has been particularly demonstrated in Excel (Microsoft Corp). An app developed for helping nurses to self-assess job BO at an early stage is required for application in the future.
Background: During the COVID-19 pandemic, one of the frequently asked questions is which countries (or continents) are severely hit. Aside from using the number of confirmed cases and the fatality to measure the impact caused by COVID-19, few adopted the inflection point (IP) to represent the control capability of COVID-19. How to determine the IP days related to the capability is still unclear. This study aims to (i) build a predictive model based on item response theory (IRT) to determine the IP for countries, and (ii) compare which countries (or continents) are hit most. Methods: We downloaded COVID-19 outbreak data of the number of confirmed cases in all countries as of October 19, 2020. The IRT-based predictive model was built to determine the pandemic IP for each country. A model building scheme was demonstrated to fit the number of cumulative infected cases. Model parameters were estimated using the Solver add-in tool in Microsoft Excel. The absolute advantage coefficient (AAC) was computed to track the IP at the minimum of incremental points on a given ogive curve. The time-to-event analysis (a.k.a. survival analysis) was performed to compare the difference in IPs among continents using the area under the curve (AUC) and the respective 95% confidence intervals (CIs). An online comparative dashboard was created on Google Maps to present the epidemic prediction for each country. Results: The top 3 countries that were hit severely by COVID-19 were France, Malaysia, and Nepal, with IP days at 263, 262, and 262, respectively. The top 3 continents that were hit most based on IP days were Europe, South America, and North America, with their AUCs and 95% CIs at 0.73 (0.61–0.86), 0.58 (0.31–0.84), and 0.54 (0.44–0.64), respectively. An online time–event result was demonstrated and shown on Google Maps, comparing the IP probabilities across continents. Conclusion: An IRT modeling scheme fitting the epidemic data was used to predict the length of IP days. Europe, particularly France, was hit seriously by COVID-19 based on the IP days. The IRT model incorporated with AAC is recommended to determine the pandemic IP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.