In this study, the recent update of the gravity database with new measurements has raised the opportunity of improving the knowledge of the crustal structure beneath the large volcanic system called Mount Cameroon, and its implication in the regional tectonics. The multi-scale wavelet analysis method was applied to highlight the geologic features of the area, and their depths were estimated using the logarithmic power spectrum method. The results reveal a complex crustal structure beneath Mount Cameroon with high variation in the lateral distribution of crustal densities. The upper and lower crusts are intruded by dense materials originating from the mantle with less lateral extension. The trends of Tiko and Ekona faults along the intrusion suggest tectonic activities as deep as 25 km. The difference in mantle composition or temperature between the East and the West of the studied area is clearly seen in detailed wavelet images and agrees with a mantle origin for the Cameroon Volcanic Line.
The structure of the transition zone between the north-western boundary of the Congo Craton and the Kribi-Campo sedimentary basin is still a matter of scientific debate. In this study, the existing gravity data are interpreted in order to better understand the geodynamics of the area. Qualitatively, results show that the major gravity highs are associated with long-wavelength shallow sources of the coastal sedimentary basin, while large negative anomalies trending E-W correlate to low dense intrusive bodies found along the northern limit of the Congo Craton. For the delineation of the causative sources, the gravity anomalies have been inverted based on the Parker-Oldenburg iterative process. As inputs, we used a reference depth of 20 km obtained by spectral analysis and successively, the density contrasts 0.19 g/cm3 and 0.24 g/cm3, deduced from available 1D shear wave velocity models. The results reveal an irregular topography of the mafic interface characterized by a sequence of horst and graben structures with mafic depths varying between 15.6 km and 23.4 km. The shallower depths (15.6-17 km) are associated with the uprising of the mafic interface towards the upper crust. This intrusion may have been initiated during the extension of the Archean Ntem crust resulting in a thinning of the continental crust beneath the coastal sedimentary basin. The subsidence of the mafic interface beneath the craton is materialized by 2 similar graben structures located beneath both Matomb and Ebolowa at a maximum depth of 23.4 km. The intermediate depths (18-22 km) are correlated to the suture zone along the Pouma-Bipindi area. The location of some landslides across the area matches within the northern margin of the Congo Craton and suggests that this margin may also impact on their occurrence. This work provides new insights into the geodynamics, regional tectonics, and basin geometry.
The southwestern coastal region of Cameroon is an area of interest because of its hydrocarbon potential (gas and oil). Terrestrial and satellite gravity data were combined and analyzed to provide a better precision in determining the structure of the study area. Firstly, the two gravity databases (in situ and satellite) have been coupled and validated using the least square collocation technique. Then, spectral analysis was applied to the combined Bouguer anomaly map to evaluate the thickness of sediments in some localities. We found that the sedimentary cover of the southwestern coastal region of Cameroon has a thickness that varies laterally from
1.68
±
0.08
to
2.95
±
0.15
km
, especially in the western part. This result confirms that our target area is a potential site for hydrocarbon exploration. The horizontal gradient method coupled with the upward continuation at variable heights has been used to highlight several lineaments and their directions (N-S, E-W, SW-NE, and SSW-NNE). Lineaments trending in an N-S orientation are predominant. The Euler deconvolution method was also applied to the Bouguer anomaly map to determine the position, orientation, and depth of the different superficial faults of the study area. It appears that the majority of superficial faults have an N-S and SSW-NNE orientation. These directions are correlated with those previously highlighted by the maxima of horizontal gradient. The structural map could be used for a better identification of the direction of fluid flow within the subsurface or to update the geological map of our study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.