With a specific capacity of 3600 mA h g(-1), silicon is a promising anode active material for Li-ion batteries (LIBs). However, because of the huge volume changes undergone by Si particles upon (de)alloying with lithium, Si electrodes suffer from rapid capacity fading. A deep understanding of the associated failure mechanisms is necessary to improve these electrochemical performances. To reach this goal, we investigate here nano-Si based electrodes by several characterization techniques. Thanks to all these techniques, many aspects, such as the behaviour of the active material or the solid electrolyte interphase (SEI) and the lithiation mechanisms, are studied upon cycling. A clear picture of the failure mechanisms of nano-Si based electrodes is provided. In particular, by combining Hg analyses, SEM observations of electrode cross-sections, and EIS measurements, we follow the evolution of the porosity within the electrode. For the first time, our results clearly show a real dynamic of the pore size distribution: the first cycles lead to the formation of a micrometric porosity which is not present initially. During the following cycles, these large pores are progressively filled up with SEI products which form continuously at the Si particle surface. Thus, from the 50th cycle, Li(+) ion diffusion is dramatically hindered leading to a strongly heterogeneous lithiation of the electrode and a rapid capacity fading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.