The superior cervical ganglion (SCG) is a well-characterized model of neural development, in which several regulatory signals have been identified. Vasoactive intestinal peptide (VIP) has been found to regulate diverse ontogenetic processes in sympathetics, though functional requirements for high peptide concentrations suggest that other ligands are involved. We now describe expression and functions of pituitary adenylate cyclase-activating polypeptide (PACAP) during SCG ontogeny, suggesting that the peptide plays critical roles in neurogenesis. PACAP and PACAP receptor (PAC(1)) mRNA's were detected at embryonic days 14.5 (E14.5) through E17.5 in vivo and virtually all precursors exhibited ligand and receptor, indicating that the system is expressed as neuroblasts proliferate. Exposure of cultured precursors to PACAP peptides, containing 27 or 38 residues, increased mitogenic activity 4-fold. Significantly, PACAP was 1000-fold more potent than VIP and a highly potent and selective antagonist entirely blocked effects of micromolar VIP, consistent with both peptides acting via PAC(1) receptors. Moreover, PACAP potently enhanced precursor survival more than 2-fold, suggesting that previously defined VIP effects were mediated via PAC(1) receptors and that PACAP is the more significant developmental signal. In addition to neurogenesis, PACAP promoted neuronal differentiation, increasing neurite outgrowth 4-fold and enhancing expression of neurotrophin receptors trkC and trkA. Since PACAP potently activated cAMP and PI pathways and increased intracellular Ca(2+), the peptide may interact with other developmental signals. PACAP stimulation of precursor mitosis, survival, and trk receptor expression suggests that the signaling system plays a critical autocrine role during sympathetic neurogenesis.
The use of molecular biological approaches has defined new mechanisms that store information in the mammalian nervous system. Environmental stimuli alter steady-state levels of messenger RNA species encoding neurotransmitters, thereby altering synaptic, neuronal, and network function over time. External or internal stimuli alter impulse activity, which alters membrane depolarization and selectively changes the expression of specific transmitter genes. These processes occur in diverse peripheral and central neurons, suggesting that information storage is widespread in the neuraxis. The temporal profile of any particular molecular mnemonic process is determined by specific kinetics of turnover and by the geometry of the neuron resulting in axonal transport of molecules to different synaptic arrays at different times. Generally, transmitters, the agents of millisecond-to-millisecond communication, are subject to relatively long-lasting changes in expression, ensuring that ongoing physiological function is translated into information storage.
Cytokines such as interleukin-1, which are found in the brain after trauma, regulate expression of nerve growth factor (NGF) mRNA and protein in hippocampal cultures. We have investigated possible mechanisms by which Il-1 beta regulates NGF in hippocampal cells. The induction of NGF mRNA by Il-1 beta was blocked by a receptor antagonist indicating that this effect is receptor mediated. Il-1 beta elicited a dramatic induction of c-fos mRNA and a slight elevation of c-jun mRNA in a time dependent manner which may allow for a role in the induction of NGF mRNA expression. We examined whether specific second messenger pathways were involved in mediating the action of Il-1 beta in the hippocampus. Activation of cAMP with forskolin or treatment with 8-Br-cAMP had no effect on NGF mRNA levels. Moreover, exposure of hippocampal cultures to Il-1 beta evoked no change in cAMP levels, indicating that this second messenger system played little or no role in the regulation of NGF expression by Il-1 beta in these cells. Further, interleukin-1 elicited no change in membrane inositol phosphate turnover, nor did it affect intracellular calcium levels. Treatment of cell cultures with the phorbol ester PMA elicited an increase in NGF mRNA, suggesting that activation of protein kinase C (PKC) may mediate NGF mRNA expression. However, prolonged treatment of cultures with PMA to desensitize PKC did not eliminate the Il-1 beta induction of NGF mRNA. Il-1 beta, therefore, did not appear to activate NGF expression via cAMP, Ca2+, or a PKC isoform that is downregulated by prolonged PMA treatment. However, a phosphorylation event may be involved in the signal transduction mechanism, as treatment with okadaic acid to inhibit protein phosphatase 2a potentiated the induction of NGF mRNA by Il-1 beta. The results presented indicate that Il-1 beta acts via its receptor to induce a rise in NGF expression. Identification of the specific second messenger pathway has remained elusive; however, a phosphorylation event appears to be intermediary. Moreover, the induction of c-fos and c-jun may represent a final common path in activation of NGF gene expression by different signals such as Il-1 beta and PMA.
Recent evidence suggests that extracellular signals regulate neurotransmitter traits in brain catecholaminergic (CA) neurons as in the periphery. Development of the dopaminergic phenotype in the mouse substantia nigra (SN) was studied by monitoring tyrosine hydroxylase (TH), the rate-limiting enzyme in CA biosynthesis in vivo and in culture. Explants of SN were dissected from embryonic day 15 embryos and grown in culture for a week. To define the influence of depolarizing signals on central dopaminergic neurons, cultures were grown with the pharmacologic depolarizing agent veratridine. This treatment elicited a significant increase in TH enzyme activity, accompanied by elevated levels of enzyme protein. The increase in activity was prevented by TTX, suggesting that transmembrane Na+ influx was necessary for the rise in TH. A physiologic presynaptic agonist, substance P, also evoked a significant increase in TH activity; however, the coproduced tachykinin peptide, substance K (SK, neurokinin A) elicited a more dramatic rise. The SK effect was blocked by TTX, suggesting that the physiologic agonist was acting through the same mechanism as the pharmacologic agent veratridine. Immunoblot analysis revealed that SK elicited a parallel increase in TH enzyme protein. Our observations suggest that the novel peptide, SK, serves a physiological role in the regulation of TH in the striatonigral pathway.
Basal forebrain cholinergic neurons, which degenerate in Alzheimer's disease, respond to multiple trophic factors, including the neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). This dual responsiveness prompted us to investigate the effects of a synthetic chimaeric molecule, containing the active domains of both NGF and BDNF. The NGF/BDNF chimaeric factor exhibited synergistic actions, and was 100-fold more potent than wild-type BDNF in enhancing survival of cultured dissociated basal forebrain cholinergic neurons. This effect was apparently due to true BDNF/NGF synergy, since addition of the two wild-type trophins simultaneously reproduced the effect of the chimaera. Synergy was selective for neurons which respond to both factors; substantia nigra dopaminergic neurons, which respond to BDNF but not NGF, exhibited no potentiation. The chimaeric factor thus revealed a synergy that may normally occur in the brain, and constitutes a potentially novel therapeutic agent with greater potency than naturally occurring individual trophins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.