Vibrio cholerae, the causative agent of cholera is ubiquitously distributed in aquatic environment particularly in coastal waters, estuaries, and rivers. In the present investigation, a multiplex PCR assay was developed for the detection of virulence-associated genes (rtxA, tcpA, ctxA, hlyA, and sto) in environmental isolates of V. cholerae. A total of 90 strains isolated from different environmental sources were screened for the presence of virulence-associated genes. Our results showed that this method represents a simple, cost effective, and robust tool for rapid detection of virulence-associated genes. This multiplex PCR can be used for examining prevalence of virulence-associated genes and hence will be useful for better understanding of epidemiology of environmental V. cholerae.
Vibrio cholerae is the etiologic agent of cholera. It is an autochthonous inhabitant of all aquatic environments. The virulence of V. cholerae is maintained by the CTX genetic element and tcpA gene. In the present investigation, environmental strains of V. cholerae isolated from different aquatic biotopes in Kerala were identified and serotyped. The antibiotic resistance pattern and presence of virulence and regulatory genes were examined. We found the presence of toxigenic non-O1/non-O139 strains harboring the CTX genetic element, heat-stable enterotoxin, rtxA gene, El Tor hemolysin, and Vibrio pathogenicity island (VPI). The strains also produced the cholera toxin (CT) as determined by monosialoganglioside enzyme-linked immunosorbent assay. A few strains belonging to the O1 serogroup but lacking the CTX genetic element were also observed. The majority of the environmental strains belonged to non-O1/non-O139 serogroup with many possessing toxR, ompU, heat-stable enterotoxin, and rtxA gene. The toxigenic non-O1/non-O139 strains exhibited resistance to trimethoprim, ampicillin, and polymixin B and intermediate resistance to co-trimoxazole. However, all other environmental strains were found resistant to ampicillin and polymixin B. Our findings demonstrate that the virulence genes are dispersed among the environmental strains of V. cholerae and a complex aquatic environment can give rise to pathogenic V. cholerae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.