Native South Africans make use of Helichrysum aureonitens Sch. Bip. extracts for the treatment of a variety of infections and they are important in traditional medicinal preparations. This study investigated the effect of seasonal variation and geographical location on the antibacterial and antifungal activities of H. aureonitens. Material was collected in two different seasons: early spring, with high rainfall and high temperatures (October), and late autumn, with low rainfall and lower temperatures (May). Further analysis was carried out using 1H-NMR based metabolomics to analyse and compare the chemical profiles of the plants in both seasons and locations. Plant materials were collected from two sites for each season, at Wakefield farm (KwaZulu-Natal), representing a colder, wetter environment, and Telperion (Mpumalanga), representing a drier and warmer environment. Leaves of H. aureonitens were tested against bacteria (Proteus vulgaris (P. vulgaris) and Bacillus subtilis (B. subtilis)) as well as fungi (Aspergillus flavus (A. flavus), Aspergillus nomius (A. nomius), Cladosporium cladosporioides (C. cladosporioides), Fusarium oxysporum (F. oxysporum) and Penicillum halotolerans (P. halotolerans)). Extracts from the October harvest showed significant activities against the Gram-negative bacterium P. vulgaris compared to the May harvest, with an MIC value of 62.5 µg/mL. Similar activity was observed between the extracts from the wet season across the two geographically different locations. There was generally very good antifungal activity observed for all the species, with the exception of A. nomius, which had MIC values ranging from 0.39–1.56 µg/mL. Extracts of plant materials harvested in the wetter region had a significantly higher activity against A. flavus and F. oxysporum in both seasons than those from plants harvested in the drier region. Telperion-harvested plants exhibited better activity against F. oxysporum in the autumn. Hydrogen-1 NMR metabolomic analysis confirmed the significant effects of the seasons and the peculiar climates of different localities on the secondary metabolite profile of H. aureonitens.
Pharmacological studies conducted in the past revealed the potential source of medicinal plants in the development of novel medicines. The phenolic contents of medicinal plants containing chlorogenic acids (CGA) have been linked to a variety of therapeutic effects, especially antiviral activity. Helichrysum aureonitens is a medicinal plant which has been reported to contain chlorogenic acids compounds and has also shown antiviral activities against a number of virus species including Herpes Simplex Virus-1 (HSV-1). In this study, the aim was to determine both the influence of seasonal variation and locality on the antiviral properties of H. aureonitens. Since chlorogenic acids have been reported as potent antiviral compounds, these compounds were targeted to determine the effects of locality and seasonal change on the chlorogenic acid profile, and subsequent antiviral activity. The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-qTOF-MS) was employed to determine the metabolic profile variations of three derivatives of chlorogenic acids-caffeoylquinic acid (CQA), dicaffeoylquinic acid (DCQA) and tricaffeoylquinic acid (TCQA) in the harvested plants growing in two diverse geographical climates and two different seasons (spring and autumn). Using the cytopathic effect (CPE) reduction approach, twenty-six samples of the plants’ leaves and stems collected during spring and autumn at Telperion nature reserve in Mpumalanga and Wakefield farm, Midlands in KwaZulu-Natal region of South Africa were evaluated for anti-HSV activity. The MTT assay was used for the cytotoxicity evaluation of the extracts prior to antiviral determination. Seventeen (mostly spring collections) of the twenty-six extracts examined were found to have considerable anti-HSV activity as measured by a reduction in tissue culture infectious dose (TCID50) of less than 105. The UPLC-qTOF-MS result revealed that dicaffeoylquinic acid (DCQA) is the most abundant, with higher concentrations in both regions and seasons. 3-CQA was also shown to be the most abundant isomer of caffeoylquinic acid in this investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.