Dynamic constrained optimization problems (DCOPs) have gained researchers attention in recent years because a vast majority of real world problems change over time. There are studies about the effect of constrained handling techniques in static optimization problems. However, there lacks any substantial study in the behavior of the most popular constraint handling techniques when dealing with DCOPs. In this paper we study the four most popular used constraint handling techniques and apply a simple Differential Evolution (DE) algorithm coupled with a change detection mechanism to observe the behavior of these techniques. These behaviors were analyzed using a common benchmark to determine which techniques are suitable for the most prevalent types of DCOPs. For the purpose of analysis, common measures in static environments were adapted to suit dynamic environments. While an overall superior technique could not be determined, certain techniques outperformed others in different aspects like rate of optimization or reliability of solutions.
Evolutionary algorithms have been widely applied for solving dynamic constrained optimization problems (DCOPs) as a common area of research in evolutionary optimization. Current benchmarks proposed for testing these problems in the continuous spaces are either not scalable in problem dimension or the settings for the environmental changes are not flexible. Moreover, they mainly focus on non-linear environmental changes on the objective function. While the dynamism in some real-world problems exists in the constraints and can be emulated with linear constraint changes. The purpose of this paper is to introduce a framework which produces benchmarks in which a dynamic environment is created with simple changes in linear constraints (rotation and translation of constraint's hyperplane). Our proposed framework creates dynamic benchmarks that are flexible in terms of number of changes, dimension of the problem and can be applied to test any objective function. Different constraint handling techniques will then be used to compare with our benchmark. The results reveal that with these changes set, there was an observable effect on the performance of the constraint handling techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.