Pathogen virulence factors and inflammation are responsible for tissue injury associated with respiratory failure in bacterial pneumonia, as seen in the bovine lung infected with Pasteurella haemolytica. Tilmicosin is a macrolide antibiotic used for the treatment of bovine bacterial pneumonia. Recent evidence suggests that tilmicosin-induced neutrophil apoptosis may have anti-inflammatory effects. Using bovine leukocytes, we sought to define whether live P. haemolytica affected tilmicosin-induced neutrophil apoptosis, assessed the proapoptotic effects of tilmicosin in comparison with other drugs, and characterized its impact on phagocytic uptake of neutrophils by macrophages. Induction of apoptosis in the presence or absence of P. haemolytica was assessed by using an enzyme-linked immunosorbent assay for apoptotic nucleosomes. In addition, fluorescent annexin-V staining identified externalized phosphatidylserine in neutrophils treated with tilmicosin, penicillin, ceftiofur, oxytetracycline, or dexamethasone. Neutrophil membrane integrity was assessed by using propidium iodide and trypan blue exclusion. As phagocytic clearance of apoptotic neutrophils by macrophages contributes to the resolution of inflammation, phagocytosis of tilmicosin-treated neutrophils by esterase-positive cultured bovine macrophages was assessed with light microscopy and transmission electron microscopy. Unlike bovine neutrophils treated with penicillin, ceftiofur, oxytetracycline, or dexamethasone, neutrophils exposed to tilmicosin became apoptotic, regardless of the presence or absence of P. haemolytica. Tilmicosin-treated apoptotic neutrophils were phagocytosed at a significantly greater rate by bovine macrophages than were control neutrophils. In conclusion, tilmicosin-induced neutrophil apoptosis occurs regardless of the presence or absence of live P. haemolytica, exhibits at least some degree of drug specificity, and promotes phagocytic clearance of the dying inflammatory cells.
-The pathology of bacterial pneumonia, such as seen in the bovine lung infected with Mannheimia haemolytica, is due to pathogen virulence factors and to inflammation initiated by the host. Tilmicosin is a macrolide effective in treating bacterial pneumonia and recent findings suggest that this antibiotic may provide anti-inflammatory benefits by inducing polymorphonuclear neutrophilic leukocyte (PMN) apoptosis. Using an in vitro bovine system, we examined the cellspecificity of tilmicosin, characterized the changes in spontaneous leukotriene B 4 (LTB 4 ) synthesis by PMN exposed to the macrolide, and assessed its effects on PMN Fas expression. Previous findings demonstrated that tilmicosin is able to induce PMN apoptosis. These results were confirmed in this study by the Annexin-V staining of externalized phosphatidylserine and the analysis with flow cytometry. The cell-specificity of tilmicosin was assessed by quantification of apoptosis in bovine PMN, mononuclear leukocytes, monocyte-derived macrophages, endothelial cells, epithelial cells, and fibroblasts cultured with the macrolide. The effect of tilmicosin on spontaneous LTB 4 production by PMN was evaluated via an enzyme-linked immunosorbent assay. Finally, the mechanisms of tilmicosin-induced PMN apoptosis were examined by assessing the effects of tilmicosin on surface Fas expression on PMN. Tilmicosin-induced apoptosis was found to be at least partially cell-specific, as PMN were the only cell type tested to die via apoptosis in response to incubation with tilmicosin. PMN incubated with tilmicosin under conditions that induce apoptosis spontaneously produced less LTB 4 , but did not exhibit altered Fas expression. In conclusion, tilmicosin-induced apoptosis is specific to PMN, inhibits spontaneous LTB 4 production, and occurs through a pathway independent of Fas upregulation. macrolide / neutrophil / apoptosis / pasteurellosis / inflammation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.