Acute-phase protein (APPs) serum levels have been studied in many human diseases, and their components contribute to host defense during the evolution of infectious diseases by acting as part of the innate immune system. Based on the importance of establishing new experimental models, the present investigation evaluated the modulation of APPs following inflammatory stimulus by the inoculation of Aeromonas hydrophila in tilapias. Fish were sampled 6 and 24 hours post-infection. Tilapias presented increase of positive APPs such as ceruloplasmin, haptoglobin, alpha-2-macroglobulin and complement C3, as well as decrease of negative APPs such as albumin and transferrin. The protein response of tilapias during the course of bacterial infection showed correlation with the kinetics of cellular accumulation in the inflamed focus with significant increase of granulocytes, thrombocytes, lymphocytes and macrophages. However, granulocytes were the predominant cells, associated with increment in the reactive oxygen species (ROS) production. Showing responses similar to those observed in humans, the modulation of APPs and the kinetics of cellular accumulation in the exudate demonstrate the feasibility of this alternative experimental model for advances and studies to understand changes in pathophysiological mechanisms of acute inflammatory reaction due to bacterial infection.
The present study aimed to describe and characterize the cellular components during the evolution of chronic granulomatous inflammation in the teleost fish pacus (P. mesopotamicus) induced by Bacillus Calmette-Guerin (BCG), using S-100, iNOS and cytokeratin antibodies. 50 fish (120±5.0 g) were anesthetized and 45 inoculated with 20 μL (40 mg/mL) (2.0 x 106 CFU/mg) and five inoculated with saline (0,65%) into muscle tissue in the laterodorsal region. To evaluate the inflammatory process, nine fish inoculated with BCG and one control were sampled in five periods: 3rd, 7th, 14th, 21st and 33rd days post-inoculation (DPI). Immunohistochemical examination showed that the marking with anti-S-100 protein and anti-iNOS antibodies was weak, with a diffuse pattern, between the third and seventh DPI. From the 14th to the 33rd day, the marking became stronger and marked the cytoplasm of the macrophages. Positivity for cytokeratin was initially observed in the 14th DPI, and the stronger immunostaining in the 33rd day, period in which the epithelioid cells were more evident and the granuloma was fully formed. Also after the 14th day, a certain degree of cellular organization was observed, due to the arrangement of the macrophages around the inoculated material, with little evidence of edema. The arrangement of the macrophages around the inoculum, the fibroblasts, the lymphocytes and, in most cases, the presence of melanomacrophages formed the granuloma and kept the inoculum isolated in the 33rd DPI. The present study suggested that the granulomatous experimental model using teleost fish P. mesopotamicus presented a similar response to those observed in mammals, confirming its importance for studies of chronic inflammatory reaction.
Summary The study objective was to make histological, histochemical and morphometric evaluations on the splenic Melanomacrophage centers (MMCs) of tilapias, Oreochromis niloticus (Linnaeus, 1758), that were subjected to chronic inflammation stimuli by implantation (IMP) of a glass coverslip in the subcutaneous tissue and through inoculation of the bacillus Calmette‐Guerin (BCG). Randomly distributed in four groups were 150 tilapias: IMP (n = 45); IMP+BCG (n = 45); BCG (n = 45); and control (n = 15). Nine fish per treatment and three control fish were sampled on days 3, 7, 14, 21 and 33. The results demonstrated that increased numbers and areas of these structures were related to the type of stimulus, and that these were greater for the specific response. The principal pigment component identified was hemosiderin. Results suggest that the intensity of the MMC response in O. niloticus depended on the type of inflammatory stimulus used, and that it was greater in fish inoculated with BCG, which induced a granulomatous inflammation when compared to the foreign body inflammatory response induced by the glass coverslips.
Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio , zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.