The crucifer-infecting tobacco mosaic virus, TMV-Cg, infects Arabidopsis thaliana (L.) Heynh. efficiently without causing severe symptoms. The systemic spread of TMV-Cg in Arabidopsis was evaluated in 14�ecotypes. Five days after inoculation, TMV-Cg was detected in apical leaves of 8 out of 14 ecotypes. As expected, the spread of TMV-Cg in the ecotypes tested was considerably faster than that of tobacco mosaic virus (TMV-U1). To study the participation of viral proteins in the TMV-Cg-induced infection, a complete genomic cDNA of TMV-Cg was cloned. The role of TMV-Cg movement protein in systemic spread was tested with a hybrid virus, constructed from the TMV-U1 genome and the TMV-Cg movement protein gene. Contrary to expectations, the systemic spread of this hybrid in Arabidopsis was similar to that of TMV-U1. The failure of the hybrid virus to spread at rates similar to those of TMV-Cg was not due to restrictions in local movement. In tobacco (Nicotiana tabacum L.), the hybrid virus spread efficiently and induced systemic mosaic symptoms characteristic of TMV-U1. The TMV-Cg cDNA clone provides an attractive tool to study virus–host interactions.
Tomato (Solanum lycopersicum L.) is an important crop in the Azapa Valley (18°35′ S, 69°30′ W) in northern Chile, with approximately 600 ha of fresh tomatoes under greenhouses. Cultivars resistant to Fusarium oxysporum f. sp. lycopersici (FOL) races 1 and 2 are mainly used. However, in 2012 and 2013, Fusarium wilt incidence was 2 to 3%. Symptoms appeared unilaterally and consisted of yellowing, leaf wilting of lower leaves, dark brown vascular discoloration, and plant death. The aim of this study was to determine the causal agent of tomato wilt in seven tomato greenhouses in the Azapa Valley. Stem samples (5 × 5 mm) were obtained 10 cm of the stem base from wilted tomatoes ‘Naomi’ (BIOAMERICA S.A., Chile) or from Maxifort tomato rootstock (De Ruiter Seed, USA), both FOL resistant to races 1 and 2. Samples were washed with tap water, surface sterilized with 1% NaClO for 3 min, and incubated on sterile moist paper towels in petri plates for 5 days at 22°C. Mycelial fragments from white colonies, emerging from diseased tissues, were transferred to PDA. Six Fusarium isolates were characterized by the presence of hyaline macroconidia, mostly 3 to 5 septate, slightly curved (19.2 to 32.1 × 2.9 to 4.5 μm) and single-celled, oval to elongated microconidia (3.1 to 8.9 × 2.0 to 4.0 μm). Chlamydospores were single or in pairs. These isolates were identified as F. oxysporum (3). The identity of F. oxysporum was confirmed by PCR assays using genomic DNA of each isolated and the universal primers Uni F and Uni R that generate a 672-bp PCR product. The pathogenic form and races were determined by PCR assays using the specific primers uni, sp13, sp23, and sprl that were able to discriminate all the three FOL races as well as F. oxysporum f. sp. radicis-lycopersici (FORL) isolates (2). The sp13 and sp23 primers amplified DNA bands of 445 and 518 bp, confirming the identity of FOL race 3. However, sprl amplified a fragment of 947 bp corresponding to FORL (2). Pathogenicity tests were conducted on 25-day-old seedlings (10 seedlings per isolate) of tomato ‘Poncho Negro,’ which is susceptible to FOL and FORL. Seedling roots were cut, submerged for 5 min in conidial suspension of 2 × 106 conidia/ml, and transplanted to 250-ml plastic containers with sterile substrate (sand/peat, 1:1). Equally treated non-inoculated seedlings were left as controls. The first symptoms induced by each of the five FOL isolates appeared 8 days after incubation under greenhouse and were characterized by yellowing of older leaves, sometimes affecting one side of the plant, vascular discoloration of the stem, and eventually plant death. In contrast, all seedlings inoculated with a FORL isolate developed a necrotic lesion and vascular discoloration at the base of the stems near the soil line, followed by wilting and plant death. Control plants remained asymptomatic. F. oxysporum was re-isolated only from inoculated plants, completing Koch's postulates. FOL and FORL were reported earlier in other tomato growing areas of Chile (1), located over 1,000 km south of the Azapa Valley. However, this is the first report of FOL race 3 and FORL in the Azapa Valley and FOL race 3 is reported for the first time in Chile. References: (1) S. Acuña. Compendio de Fitopatógenos de Cultivos Agrícolas. Servicio Agrícola y Ganadero. Gobierno de Chile, 2008. (2) Y. Hirano and T. Arie. J. Gen. Plant Pathol. 72:273, 2006. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.
Micromorphological and anatomical characteristics of the leaves of Zea mays L. amylacea were analyzed using digital images obtained from SEM. Concentrations of 100 mM NaCl (low salinity, L) or 430 mM NaCl (high salinity, H) and/or an excess of B supplied as boric acid to obtain 20 (334 µM) and 40 (668 µM) mg B kg -1 were added to the nutrient solution for 20 days. Our results complement other studies of the ecotype amylacea and confirm the high degree of tolerance to salinity and excess boron it shows, especially in the role of xylem vessels in the entry and transport of water and ions and their relation to the regulation of the stomata.Key words: boron, salinity, Zea mays L. amylacea, micromorphology. RESUMEN Se analizaron las características micromorfológicas y anatómicas en la hoja de Zea mays L. amylacea. Las imágenes digitales obtenidas a partir de SEM (microscopia electrónica de barrido) se utilizan con este propósito. Las concentraciones de 100 mM de NaCl (baja salinidad, L) o 430 mM de NaCl (de alta salinidad, H) se utilizaron en el caso de los tratamientos de solución salina, o con un exceso de boro (B), suministrado como ácido bórico, para obtener 20 (334 µM) y 40 (668 µM) B mg kg -1 en la solución nutritiva durante 20 días. Nuestros resultados complementan otros estudios realizados en el ecotipo amylacea y confirman el alto grado de tolerancia a la salinidad y al exceso de B. Sobre todo, el rol de los vasos xilemáticos en la entrada y el transporte de agua y los iones y su relación con la regulación de los estomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.