1. Surveying wildlife communities provides data for informing conservation and management decisions that affect multiple species. Autonomous recording units (ARUs) can efficiently gather community data for a variety of taxa, but generally require software algorithms to classify each recorded call to a species. Species classification Surveying wildlife communities provides data for informing conservation and management decisions that affect multiple species. Autonomous recording units (ARUs) efficiently gather community data by passively recording animal vocalizations (Gibb, Browning, Glover-Kapfer, & Jones, 2019), generally for multiple time periods ('visits') at each surveyed location ('site'). These data, including counts of call recordings and corresponding species classifications, can be used to investigate various ecological questions and are applicable for surveying multiple taxa (e.g. anurans, bats, birds). However, due to the large volumes of data typically collected, most studies using acoustic surveys require classification software to identify the species of each call recording (Gibb et al., 2019). This automated process includes species classification errors that lead to both false-negative and false-positive detections. For instance, when a species is present, false-negative detections can result from successfully recording its calls but misclassifying them as alternative species. These errors are in addition to false negatives from failing to record any of its calls. False-positive detections at sites where a species is absent are often due to misclassifying recorded calls from another species. Estimating the ecological parameters of interest, while addressing these errors is an important consideration when analysing ARU data. Occupancy models (MacKenzie et al., 2002) are a natural framework for analysing ARU data when visits are summarized to detection/non-detection observations for each species (e.g. Banner et al., 2018; Rodhouse et al., 2019). Originally developed to account for false negatives, standard occupancy models assume that all false positives are removed (MacKenzie et al., 2002). Completely eliminating false positives from ARU data is generally cost prohibitive because it requires manually confirming at least one recording for every visit. False positives are an important source of errors in many
Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non‐detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false‐positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species‐specific parameter values, and desired precision. For transferability, a fully documented r package, , for implementing a false‐positive occupancy model is provided. Practitioners can apply to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false‐positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.
The study of plant distribution and abundance is a fundamental pursuit in ecology and conservation biology. Measuring plant abundance by visually assessing percent cover and recording a cover class is a common field method that yields ordinal data. Statistical models for ordinal data exist but entail cumbersome interpretations and sometimes restrictive assumptions. We propose a Bayesian hierarchical framework for analysing cover class data that allows for linking ordinal observations to a latent beta distribution and accounts for zero inflation. Harnessing a latent beta distribution supports interpreting changes in abundance in terms of mean percent cover rather than odds ratios of cumulative cover classes as for cumulative link models. The zero augmentation allows for simultaneous inferences on both occurrence (distribution) and abundance. We show how our model can account for true and false zeros, misclassification of cover classes, multiple species and hierarchical sampling designs, using empirical examples and simulations. Simulated observation errors, when ignored, led to models overestimating abundance and underestimating occurrence. Based on simulations, we found no substantial difference between mean percent cover estimates when analyzing ordinal cover classes versus continuous percent cover as the response. Our empirical datasets displayed high probability of detection (>0.85 on average for all species), likely due to the sampling design used and training of observers. Probability of occurrence was slightly underestimated for bare ground, Artemisia tridentata, Elycap medusae, and Poa secunda using a model that ignored imperfect detection. Estimated mean percent cover was not substantially impacted by ignoring measurement error for five plant species and bare ground. Our modelling framework for cover class data allows for an explicit separation of distribution from abundance and, importantly, allows for interpreting species–environment relationships in terms of variation in mean percent cover as compared to cumulative odds ratios. The beta distribution inherently accommodates heteroscedasticity and skewness, statistical properties that are a consequence of spatially aggregated patterns common to plant survey data. Recording cover classes provides a reliable, efficient way to measure plants and our simulations suggest little loss of information compared to assuming continuous percent cover. We provide JAGS and Stan model code for implementation.
Occupancy models are widely applied to estimate species distributions, but few methods exist for model checking. Thorough model assessments can uncover inadequacies and allow for deeper ecological insight by exploring structure in the observed data not accounted for by a model. We introduce occupancy model residual definitions that utilize the posterior distribution of the partially latent occupancy states. Residual‐based assessments are valuable because they can target specific assumptions and identify ways to improve a model, such as adding spatial correlation or meaningful covariates. Our approach defines separate residuals for occupancy and detection, and we use simulation to examine whether missing structure for modeling detection probabilities can be distinguished from that for occupancy probabilities. In many scenarios, our residual diagnostics were able to separate inadequacies at the different model levels successfully, but we describe other situations when this may not be the case. Applying Moran's I residual diagnostics to assess models for silver‐haired (Lasionycteris noctivagans) and little brown (Myotis lucifugus) bats only provided evidence of residual spatial correlation among detections. Targeting specific model assumptions using carefully chosen residual diagnostics is valuable for any analysis, and we remove previous barriers for occupancy analyses—lack of examples and practical advice.
Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection‐level component of the model (e.g., first‐order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodness‐of‐fit test using a chi‐square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie–Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie–Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov‐structured detection‐level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness‐of‐fit test and specifically evaluates occupancy model lack of fit related to correlation among detections within a sample unit. Our diagnostic tool is available for practitioners that serially deploy survey equipment as a way to achieve cost savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.