Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.
Intercropping maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) is one of the predominant farming practices in eastern and southern Africa (ESA) for effective use of resources and continuous household food supply. The productivity of sole or intercropped crops is subject to variety, location, year, and their interaction. Therefore, the objective of this study was to determine the productivity of newly released common bean varieties NUA45 and SER83 under sole cropping and intercropping with a maize hybrid variety SC672 as a guide to large-scale production. Experiments were conducted at Chitedze Agricultural Research Station (13.85°S; 33.38°E) and Linthipe Extension Planning Area (12.06°S; 33.25°E) in 2019 and 2020 in Malawi using a factorial arrangement laid out in a randomized complete block design (RCBD) with four replications. The numbers of pods per plant (NPP) and seeds per pod (NSP), grain yield (GYD), and 100-seed weight were collected for common bean included, while GYD was recorded for maize. The main effects for genotype, location, year, and intercropping system were significant (p < 0.05) for GYD in common bean. The effects of the year and cropping system and location by intercropping system interaction were significant for maize GYD. The maize yield did not vary between sole cropped and intercropped systems. The total land equivalent ratios (LERs) for NUA45 and SER83 were 1.59 and 1.77, respectively. The LER-values showed a significant difference (p < 0.034), suggesting a considerably higher benefit of maize and common bean intercropping. Overall, intercropping maize with common bean rendered higher yields in the SER83/SC672 intercropping system than the sole crop in the study areas. Therefore, intra-row intercropping of the newly released common bean variety SER83 with a maize hybrid variety SC672 is recommended in the study area and other similar agro-ecologies for stable and sustainable production of both crops.
Genotype-by-environment (GEI) analysis guides the recommendation of best-performing crop genotypes and production environments. The objective of this study was to determine the extent of GEI on seed yield in tepary bean for genotype recommendation and cultivation in drought-prone environments. Forty-five genetically diverse tepary bean genotypes were evaluated under non-stressed and drought-stressed conditions for two seasons using a 9 × 5 alpha lattice design with three replications in four testing environments. Data were collected on seed yield (SY) and days to physiological maturity (DTM) and computed using a combined analysis of variance, the additive main effect and multiplicative interaction (AMMI), the best linear unbiased predictors (BLUPs), the yield stability index (YSI), the weighted average of absolute scores (WAASB) index, the multi-trait stability index (MTSI), and a superiority measure. AMMI analysis revealed a significant (p < 0.001) GEI, accounting for 13.82% of the total variation. Genotype performance was variable across the test environments, allowing the selection of best-suited candidates for the target production environment. The environment accounted for a substantial yield variation of 52.62%. The first and second interaction principal component axes accounted for 94.8 and 4.7% of the total variation in the AMMI-2 model, respectively, of surmountable variation due to GEI. The AMMI 2 model family was sufficient to guide the selection of high-yielding and stable genotypes. Based on best linear unbiased predictors (BLUPs), yield stability index (YSI), superiority measure (Pi), and broad adaptation, the following tepary bean genotypes were identified as high-yielding and suited for drought-prone environments: G40138, G40148, G40140, G40135, and G40158. The selected tepary bean genotypes are recommended for cultivation and breeding in Malawi or other related agroecologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.