Since the discovery of tumor necrosis factor (TNF)-alpha, researchers have pursued many approaches to harness the potency of TNF-alpha and TNF superfamily members to treat human cancers. Several ligands of the TNF superfamily, including TNF-alpha, lymphotoxin, FAS ligand (FasL), and APO2 ligand/TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) have been tested in various stages of clinical research for their anti-tumor efficacy. Moreover, several antibodies to TNF receptor (TNFR) superfamily members are now being explored as cancer therapeutics. Due to the toxicity associated with delivering TNF-alpha systemically at clinically relevant doses, more targeted methods are now seen as a likely alternative to provide a localized therapeutically effective dose of TNF-alpha. In this review we revisit historical attempts to use TNF-alpha to treat human cancer, and put this into the context of more recent targeted strategies to circumvent TNF-alpha's systemic toxicity. We will attempt to integrate the results of pre-clinical and clinical trials with a concise synopsis of the TNF-alpha signaling network, with the goal of reconciling our understanding of how the cell biology and tumor biology mechanistically relate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.