Androgenic-anabolic steroids (AAS) have been associated with an increased incidence of tendon rupture. The aim of this study was to compare the biomechanical properties of the rat calcaneal tendon (CT), superficial flexor tendon (SFT), and deep flexor tendon (DFT), and to determine the effect of jump training in association with AAS. Animals were separated into four groups: sedentary, trained, AAS-treated sedentary rats (AAS), and AAS-treated and trained animals. Mechanical testing showed that the CT differed from the DFT and SFT, which showed similar mechanical properties. Jump caused the CT to exhibit an extended toe region, an increased resistance to tensional load, and a decreased elastic modulus, characteristics of an elastic tendon capable of storing energy. AAS caused the tendons to be less compliant, and the effects were reinforced by simultaneous training. The DFT was the most affected by training, AAS, and the interaction of both, likely because of its involvement in the toe-off step of jumping, which we suggest is related to the rapid transmission of force as opposed to energy storage. In conclusion, tendons are differently adapted to exercise, but responded equally to AAS, showing reduced flexibility, which is suggested to increase the risk of tendon rupture in AAS consumers.
The Achilles tendon can support high tension forces and may experience lesions. The damaged tissue does not regenerate completely, with the organization and mechanical properties of the repaired tendon being inferior to those of a healthy tendon. Nitric oxide (NO) plays an important role in wound repair. We have examined the structural reorganization and repair in Achilles tendon after injury in rats treated with the NO synthase inhibitor L-NAME. The right Achilles tendon of male Wistar rats was partially transected. One group of rats was treated with L-NAME (~300 mg/kg per day, given in drinking water) for 4 days prior to tendon sectioning and throughout the post-operative period. Control rats received water without L-NAME. The tendons were excised at 7, 14, and 21 days post-injury and used to quantify hydroxyproline and for mechanical tests. Tendons were also processed for histomorphological analysis by polarized light microscopy, which showed that the collagen fibers were disorganized by day 7 in non-treated and L-NAME-treated rats. In non-treated rats, the organization of the extracellular matrix was more homogeneous by days 14 and 21 compared with day 7, although this homogeneity was less than that in normal tendon. In contrast, in injured tendons from L-NAME-treated rats, the collagen fibers were still disorganized on day 21. Tendons from treated rats had more hydroxyproline but lower mechanical properties compared with those from non-treated rats. Thus, NO modulates tendon healing, with a reduction in NO biosynthesis delaying reorganization of the extracellular matrix, especially collagen.
The objective of this study was to evaluate the effect of hyperlipidemia on the biomechanical and morphological properties of the femur of low-density lipoprotein receptor gene knockout mice (LDLr-/-) mice. Ten wild-type mice (C57BL6) and 10 LDLr-/- mice generated on a C57BL6 background were used. Male 3-month-old animals were divided into four groups (n = 5): group W (wild type) and group L (LDLr-/-) receiving low-fat commercial ration, and group WH (wild type) and group LH (LDLr-/-) receiving a high-fat diet. After 60 days, blood samples were collected for laboratory analysis of calcium, triglycerides, and cholesterol. The femur was excised for mechanical testing and morphometric analysis. LDLr-/- mice receiving the high-fat diet presented more marked alterations in the mechanical and morphological properties of femoral cortical and trabecular bone. Changes in the plasma levels of calcium, triglycerides, cholesterol, and fractions were also more pronounced in this group. The present results demonstrate that hyperlipidemia causes alterations in the structure and mechanical properties of the femur of LDLr-/- mice. These effects were more pronounced when associated with a high-fat diet.
This study investigated if nonforced active exercise alters the biomechanical and biochemical properties of calcaneal tendon during maturation. Chickens at 1, 5, and 8 months old were divided into two groups: caged and penned. Intact tendons were used for biomechanical analysis, but they were divided into tensile and compressive regions for quantification of hydroxyproline and glycosaminoglycans. The exercise increased tendon strength after the fifth month, energy absorption in the eighth month, and ultimate tensile stress in the first month. Age increased tendon strength and energy storage and reduced stiffness but did not alter stress. There was an increase in collagen content in the fifth month. Glycosaminoglycans showed a progressive decline in the tensile region. Thus, some biomechanical and biochemical changes depend on the maturation process itself and also are influenced by spontaneous exercise, showing that mechanical stimulation of low intensity may help to improve the quality of the tendon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.