The supercritical water reactor (SCWR), which is one of the generation IV reactor concepts, has particular thermal hydraulics features. If a severe accident happens and pressure and mass flux in a reactor core are rapidly decreased, a film boiling on a fuel cladding tube surface may occur at subcritical conditions. Once the film boiling happens, heat transfer on the cladding tube surface drastically deteriorated and may result in serious damage to the reactor core. The cooling capability during the film boiling depends on the wetting phenomenon, therefore, experiments to clarify wettability phenomenon in subcritical condition are required. One of the experiments to clarify the wettability phenomenon is the capillary action experiment. In the closed system, the water level will elevate due to the injection of the water. The difference in water elevation is due to the capillary force in the different diameter of the pipes. Based on the different water levels with known surface tension, it is possible to quantify the contact angle. The challenge of the experiment is to measure the precise elevation of the water in small diameter metal pipes under high-temperature and high-pressure condition. Therefore, the neutron imaging was applied in this experiment. Neutron imaging is a structure visualization technique. The principle is the neutron flux captured after passing through the object for visualizing the structure of an object. Neutron flux which is captured using a scintillator plate thus can be seen as an image using CCD video camera. Our research group focuses on the radiation induced surface activation (RISA) effect. Significant improvements of surface wettability and boiling heat transfer on oxide film coatedmaterials by the RISA were confirmed especially under room temperature conditions. In this present research, we evaluate the RISA effect on capillary action in a subcritical condition using the various diameter of the pipe. Neutron imaging was used to visualize the water-gas interface in small diameter stainless steel pipes. The capillary pipes with various inside diameters such as 0.5, 0.8, 1.2, 1.4, and 1.8 mm were used as a test section which was heated up to a temperature of 320° C under a pressure of 21 MPa. The pipes irradiated by γ-ray with an integrated irradiation dose of approximately 500 kGy and non-irradiated pipes with various diameters are installed in parallel and water levels in each pipe were compared to evaluate capillary action differences.
Regarding a severe accident of supercritical water-cooled reactor (SCWR), phase change between subcritical and supercritical conditions is crucial since heat transfer rate changes massively causing a dryout accident. Fundamental knowledge on surface wettability and boiling heat transfer on metals at subcritical conditions under radiation are, thus, important in thermal-hydraulic design and safety analysis of reactor core in light water reactors including a supercritical water-cooled reactor. The radiation induced surface activation (RISA) which enhances wettability and anticorrosive effect on the metal surface was first revealed by authors in 1999. In the earlier studies, significant improvements of surface wettability and boiling heat transfer on oxide film coatedmaterials by the RISA were observed in a room temperature condition. The purpose of this study is to evaluate the effect of oxidized metal and γ-ray irradiation on metal surface wettability in high pressure and high temperature conditions. In this experiment, the test section was pressurized at 12 MPa with nitrogen gas using pressure vessel and was heated up to temperatures of 20, 150, 200, 250 and 290 centigrade. Two types of material; a stainless-304 and austenitic stainless steel named PNC1520, which is considered as a potential material of fuelcladding tube of the SCWR, were used as specimens. The oxide film on the specimen was formed in supercritical water at 380 centigrade and 22 MPa. About 600 kGy Co-60 γ-ray source was used for irradiation. The results showed that the difference of oxidization on wettability was insignificant at room temperature before γ-ray irradiation while contact angles on the oxidized specimen decreased at high temperatures. The water growth rate on oxidized material slightly lower compare to non-oxidized material. This result suggests oxide film formation on metal surface plays an important role in surface wettability enhancement by the RISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.