Donoghue, and Emery N. Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93: 1074 -1089, 2005. First published September 8, 2004 doi:10.1152/jn.00697.2004. Multiple factors simultaneously affect the spiking activity of individual neurons. Determining the effects and relative importance of these factors is a challenging problem in neurophysiology. We propose a statistical framework based on the point process likelihood function to relate a neuron's spiking probability to three typical covariates: the neuron's own spiking history, concurrent ensemble activity, and extrinsic covariates such as stimuli or behavior. The framework uses parametric models of the conditional intensity function to define a neuron's spiking probability in terms of the covariates. The discrete time likelihood function for point processes is used to carry out model fitting and model analysis. We show that, by modeling the logarithm of the conditional intensity function as a linear combination of functions of the covariates, the discrete time point process likelihood function is readily analyzed in the generalized linear model (GLM) framework. We illustrate our approach for both GLM and non-GLM likelihood functions using simulated data and multivariate single-unit activity data simultaneously recorded from the motor cortex of a monkey performing a visuomotor pursuit-tracking task. The point process framework provides a flexible, computationally efficient approach for maximum likelihood estimation, goodness-of-fit assessment, residual analysis, model selection, and neural decoding. The framework thus allows for the formulation and analysis of point process models of neural spiking activity that readily capture the simultaneous effects of multiple covariates and enables the assessment of their relative importance.
We consider the question of evaluating causal relations among neurobiological signals. In particular, we study the relation between the directed transfer function (DTF) and the well-accepted Granger causality, and show that DTF can be interpreted within the framework of Granger causality. In addition, we propose a method to assess the significance of causality measures. Finally, we demonstrate the applications of these measures to simulated data and actual neurobiological recordings.
Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons.
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.