Quaternary ammonium salts (QAS) are an important part of the increasing surfactant market. Conventional production processes employ toxic alkyl halides in a Menshutkin reaction with a tertiary amine (DMDA). Dimethyl...
Surfactants such as quaternary ammonium salts (QAS) have been in increasing demand, for emerging new applications. Recent attempts at process intensification of their production have disclosed the need for a better understanding of QAS thermal stability. This work aims to determine the degradation kinetics of various QASs and the associated solvent effects. The degradation kinetics of four methyl carbonate QASs were determined in various polar solvents in stainless steel batch autoclaves. 1 H NMR spectrometry was employed for offline analysis of the reaction mixtures. The kinetic parameters were then used to compare the thermal stability of the four compounds in the polar solvents. Water showed no degradation, and methanol (MeOH) was the solvent that provided the secondbest stability. Water-MeOH mixtures may provide an overall optimum. Moreover, and longer long-chain substituents increased the degradation rate. Thermogravimetric analysis was used to obtain the thermal stability in a solid state, that is, solventless environment. Isoconversional analysis showed that no reliable kinetic parameters could be determined. Nevertheless, the data did allow for a comparison of the thermal stability of 14 different QASs. Furthermore, the relative instability of the compounds in the solid state demonstrated the challenges of solventless QAS production.
<div>Surfactants such as quaternary ammonium salts (QAS) have been in increasing demand, for emerging new applications. Recent attempts at process intensification of</div><div>their production, have disclosed the need for a better understanding of QAS thermal stability. This work aims to determine degradation kinetics of various QASs, and the</div><div>associated solvent effects. Degradation kinetics of four methyl carbonate QASs were determined in various</div><div>polar solvents in stainless steel batch autoclaves. <sup>1</sup>H NMR spectrometry was employed for online analysis of the reaction mixtures. The kinetic parameters were then used</div><div>to compare the thermal stability of the four compounds in the polar solvents. Water showed not degradation, and methanol (MeOH) was the solvent that provided the</div><div>second-best stability. Water-MeOH mixtures may provide an overall optimum. More, and longer long-chain substituents increased the degradation rate. Thermogravimetric Analysis was used to obtain the thermal stability in a solid-</div><div>state, i.e. solventless environment. Isoconversional analysis showed that no reliable kinetic parameters could be determined. Nevertheless, the data did allow for a compar-</div><div>ison of the thermal stability of 14 different QASs. Furthermore, the relative instability of the compounds in solid-state demonstrated the challenges of solventless QAS production.</div>
<div>Surfactants such as quaternary ammonium salts (QAS) have been in increasing demand, for emerging new applications. Recent attempts at process intensification of</div><div>their production, have disclosed the need for a better understanding of QAS thermal stability. This work aims to determine degradation kinetics of various QASs, and the</div><div>associated solvent effects. Degradation kinetics of four methyl carbonate QASs were determined in various</div><div>polar solvents in stainless steel batch autoclaves. <sup>1</sup>H NMR spectrometry was employed for online analysis of the reaction mixtures. The kinetic parameters were then used</div><div>to compare the thermal stability of the four compounds in the polar solvents. Water showed not degradation, and methanol (MeOH) was the solvent that provided the</div><div>second-best stability. Water-MeOH mixtures may provide an overall optimum. More, and longer long-chain substituents increased the degradation rate. Thermogravimetric Analysis was used to obtain the thermal stability in a solid-</div><div>state, i.e. solventless environment. Isoconversional analysis showed that no reliable kinetic parameters could be determined. Nevertheless, the data did allow for a compar-</div><div>ison of the thermal stability of 14 different QASs. Furthermore, the relative instability of the compounds in solid-state demonstrated the challenges of solventless QAS production.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.