For almost sixty years, solar energy for space applications has relied on inorganic photovoltaics, evolving from solar cells made of single crystalline silicon to triple junctions based on germanium and III-V alloys. The class of organic-based photovoltaics, which ranges from all-organic to hybrid perovskites, has the potential of becoming a disruptive technology in space applications, thanks to the unique combination of appealing intrinsic properties (e.g. record high specific power, tunable absorption window) and processing possibilities. Here, we report on the launch of the stratospheric mission OSCAR, which demonstrated for the first time organic-based solar cell operation in extraterrestrial conditions. This successful maiden flight for organic-based photovoltaics opens a new paradigm for solar electricity in space, from satellites to orbital and planetary space stations.Nevertheless, already in the fields of aerospace[3] and of organic and hybrid semiconductors [4,5], the specific power (W/kg) was proposed as a valid figure of merit to evaluate PV technologies for space missions. In this regard, Organic Solar Cells (OSCs) and hybrid organic-inorganic Perovskite Solar Cells (PSCs) -termed together as HOPV, Hybrid and Organic PhotoVoltaicsgreatly outperform their inorganic counterparts [4,5]. They represent two novel branches of PV technologies, which saw their rise during the last decade (last few years in the case of PSCs) thanks to their potentially very low production costs. The high absorbance of the photo-active layers in HOPVs allows for efficient light collection within a few hundred nanometers of material, which leads to thicknesses one or two orders of magnitude lower than those of inorganic thin PVs. The rest of the layers making up the solar cell stacks are either as thin as or thinner than the absorbers, and the only thickness (and hence mass) limitation comes from substrate and encapsulation, which can consist of micrometers thick flexible plastic foil [4,5]. The specific power reached to date for perovskite (23 kW/kg) [4] and organic (10 kW/kg)[5] solar cells is thus over 20
Centrifugal fiber spinning has recently emerged as a highly promising alternative technique for the production of nonwoven, ultrafine fiber mats. Due to its high production rate, it could provide a more technologically relevant fiber spinning technique than electrospinning. In this contribution, we examine the influence of polymer concentration and nozzle material on the centrifugal spinning process and the fiber morphology. We find that increasing the polymer concentration transforms the process from a beaded-fiber regime to a continuous-fiber regime. Furthermore, we find that not only fiber diameter is strongly concentration-dependent, but also the nozzle material plays a significant role, especially in the continuous-fiber regime. This was evaluated by the use of a polytetrafluoroethylene (PTFE) and an aluminum nozzle. We discuss the influence of polymer concentration on fiber morphology and show that the choice of nozzle material has a significant influence on the fiber diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.