Monolayers that are bonded via a covalent Si−C bond are prepared on a silicon(100) surface by reaction of a 1-alkene with the hydrogen-terminated silicon surface. The monolayers have been analyzed by infrared spectroscopy, X-ray reflectivity, and water contact angle measurements and display a remarkably high thermal stability. The reaction also works well for ω-functionalized 1-alkenes, provided that the functional group is properly protected. After formation of the monolayer, the protecting group can be easily removed without noticeable disturbance of the monolayer integrity, and the now reactive sites at the monolayer can be used for further functionalization, as has been shown in the case of ester-protected alcohol and carboxylic acids. Functional groups that are too close to the alkene moiety interfere with monolayer formation and yield disordered monolayers.
different core block chemistry. The key point for choosing the different chemistries of the two hydrophobic blocks is that the two blocks experience a high degree of mutual immiscibility. In the current experiment, polystyrene (PS) and poly(2,3,4,5,6-pentafluorostyrene) (PPFS) were employed as the different, third hydrophobic blocks in the two triblock copolymers (PAA 94 -b-PMA 103 -b-PS 117 and PAA 93 -b-PMA 99 -b-PPFS 100 ) (29). Equal molar amounts of the two triblock copolymers with different respective third blocks were dissolved in pure THF. EDDA was then added to reach a final 1:1 molar ratio of amine groups to acid groups. The diamines underwent complexation with the PAA blocks, thereby forming aggregates with PAA-diamine cores. Notably, these aggregates contained each of the triblock copolymers with both PS and PPFS hydrophobic blocks because of the simple trapping of unlike hydrophobic blocks in the same aggregate by PAA-diamine complexation. Next, introduction of water into the THF solution to a final ratio of THF:water = 1:2 provided for the formation of cylindrical micelles. However, the existence of the original mixed triblock copolymer aggregates, as a result of PAA and diamine complexation, forced the local co-assembly of unlike third hydrophobic blocks into the same micelle core. In addition, the lack of chain exchange in solution that disallows global chain migration and maintains nonequilibrated micelle structures, combined with the fact that the PAA chains in the corona of the newly formed micelles were still complexed with diamines and were not freely mobile within the micelle, guarantee the stability of the mixed-core micelle. The immiscibility of the two different hydrophobic blocks, PS and PPFS, eventually resulted in internal phase separation on the nanoscale, producing multicompartment micelles. The images shown in Fig. 4, A to D were taken after 4 days of aging a solution of mixed hydrophobic core cylinders. Internal phase separation is clearly indicated by the strong undulations along the cylinder surfaces and the TEM contrast variation along the cylinders. The larger, darker, and more spherical regions within the cylinders are hypothesized to be regions that are concentrated in PAA 94 -b-PMA 103 -b-PPFS 100 triblock copolymer. First, there is a higher interfacial energy between PPFS and PMA, relative to PS and PMA, causing more chain stretching within PPFS-rich core domains so as to limit PPFS interactions with surrounding PMA blocks. Second, the greater electron density of the PPFS block provides a greater ability to scatter electrons and produce darker images in the TEM. The thinner region of the undulating cylinder would then be occupied primarily by PAA 93 -b-PMA 99 -b-PS 117 (Fig. 4G). This internal cylinder phase separation only occurred at relatively higher amounts of water in the mixed solvent solutions. Cryo-TEM showed uniform cylinders without undulation on the surface at only 40% water/THF solution after 4 days (Fig. 4E). However, multicompartment cylinders could be obser...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.