Many plants flower in response to seasonal fluctuations in day length. The
CONSTANS
(
CO
) gene of
Arabidopsis
promotes flowering in long days. Flowering is induced when
CO
messenger RNA expression coincides with the exposure of plants to light. However, how this promotes CO activity is unknown. We show that light stabilizes nuclear CO protein in the evening, whereas in the morning or in darkness the protein is degraded by the proteasome. Photoreceptors regulate CO stability and act antagonistically to generate daily rhythms in CO abundance. This layer of regulation refines the circadian rhythm in
CO
messenger RNA and is central to the mechanism by which day length controls flowering.
The transcriptional regulator CONSTANS (CO) promotes flowering of Arabidopsis under long summer days (LDs) but not under short winter days (SDs). Post-translational regulation of CO is crucial for this response by stabilizing the protein at the end of a LD, whereas promoting its degradation throughout the night under LD and SD. We show that mutations in CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a component of a ubiquitin ligase, cause extreme early flowering under SDs, and that this is largely dependent on CO activity. Furthermore, transcription of the CO target gene FT is increased in cop1 mutants and decreased in plants overexpressing COP1 in phloem companion cells. COP1 and CO interact in vivo and in vitro through the C-terminal region of CO. COP1 promotes CO degradation mainly in the dark, so that in cop1 mutants CO protein but not CO mRNA abundance is dramatically increased during the night. However, in the morning CO degradation occurs independently of COP1 by a phytochrome B-dependent mechanism. Thus, COP1 contributes to day length perception by reducing the abundance of CO during the night and thereby delaying flowering under SDs.
contributed equally to this work We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their in¯uence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F 1 hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.