Extracellular action potentials were recorded from developing dissociated rat neocortical networks continuously for up to 49 days in vitro using planar multielectrode arrays. Spontaneous neuronal activity emerged toward the end of the first week in vitro and from then on exhibited periods of elevated firing rates, lasting for a few days up to weeks, which were largely uncorrelated among different recording sites. On a time scale of seconds to minutes, network activity typically displayed an ongoing repetition of distinctive firing patterns, including short episodes of synchronous firing at many sites (network bursts). Network bursts were highly variable in their individual spatio-temporal firing patterns but showed a remarkably stable underlying probabilistic structure (obtained by summing consecutive bursts) on a time scale of hours. On still longer time scales, network bursts evolved gradually, with a significant broadening (to about 2 s) in the third week in vitro, followed by a drastic shortening after about one month in vitro. Bursts at this age were characterized by highly synchronized onsets reaching peak firing levels within less than ca. 60 ms. This pattern persisted for the rest of the culture period. Throughout the recording period, active sites showed highly persistent temporal relationships within network bursts. These longitudinal recordings of network firing have, thus, brought to light a reproducible pattern of complex changes in spontaneous firing dynamics of bursts during the development of isolated cortical neurons into synaptically interconnected networks.
To achieve selective electrical interfacing to the neural system it is necessary to approach neuronal elements on a scale of micrometers. This necessitates microtechnology fabrication and introduces the interdisciplinary field of neurotechnology, lying at the juncture of neuroscience with microtechnology. The neuroelectronic interface occurs where the membrane of a cell soma or axon meets a metal microelectrode surface. The seal between these may be narrow or may be leaky. In the latter case the surrounding volume conductor becomes part of the interface. Electrode design for successful interfacing, either for stimulation or recording, requires good understanding of membrane phenomena, natural and evoked action potential generation, volume conduction, and electrode behavior. Penetrating multimicroelectrodes have been produced as one-, two-, and three-dimensional arrays, mainly in silicon, glass, and metal microtechnology. Cuff electrodes circumvent a nerve; their selectivity aims at fascicles more than at nerve fibers. Other types of electrodes are regenerating sieves and cone-ingrowth electrodes. The latter may play a role in brain-computer interfaces. Planar substrate-embedded electrode arrays with cultured neural cells on top are used to study the activity and plasticity of developing neural networks. They also serve as substrates for future so-called cultured probes.
To properly observe induced connectivity changes after training sessions, one needs a network model that describes individual relationships in sufficient detail to enable observation of induced changes and yet reveals some kind of stability in these relationships. We analyzed spontaneous firing activity in dissociated rat cortical networks cultured on multi-electrode arrays by means of the conditional firing probability. For all pairs (i, j) of the 60 electrodes, we calculated conditional firing probability (CFP(i,j)[tau]) as the probability of an action potential at electrode j at t = tau, given that one was detected at electrode i at t = 0. If a CFP(i,j)[tau] distribution clearly deviated from a flat one, electrodes i and j were considered to be related. For all related electrode pairs, a function was fitted to the CFP-curve to obtain parameters for 'strength' and 'delay' (i.e. maximum and latency of the maximum of the curve) of each relationship. In young cultures the set of identified relationships changed rather quickly. At 16 days in vitro (DIV) 50% of the set changed within 2 days. Beyond 25 DIV this set stabilized: during a week more than 50% of the set remained intact. Most individual relationships developed rather gradually. Moreover, beyond 25 DIV relational strength appeared quite stable, with coefficients of variation (100 x SD/mean) around 25% in periods of approximately 10 h. CFP analysis provides a robust method to describe the underlying probabilistic structure of highly varying spontaneous activity in cultured cortical networks. It may offer a suitable basis for plasticity studies, in the case of changes in the probabilistic structure. CFP analysis monitors all pairs of electrodes instead of just a selected one. Still, it is likely to describe the network in sufficient detail to detect subtle changes in individual relationships.
Learning, or more generally, plasticity may be studied using cultured networks of rat cortical neurons on multi electrode arrays. Several protocols have been proposed to affect connectivity in such networks. One of these protocols, proposed by Shahaf and Marom, aimed to train the input-output relationship of a selected connection in a network using slow electrical stimuli. Although the results were quite promising, the experiments appeared difficult to repeat and the training protocol did not serve as a basis for wider investigation yet. Here, we repeated their protocol, and compared our ‘learning curves’ to the original results. Although in some experiments the protocol did not seem to work, we found that on average, the protocol showed a significantly improved stimulus response indeed. Furthermore, the protocol always induced functional connectivity changes that were much larger than changes that occurred after a comparable period of random or no stimulation. Finally, our data shows that stimulation at a fixed electrode induces functional connectivity changes of similar magnitude as stimulation through randomly varied sites; both larger than spontaneous connectivity fluctuations. We concluded that slow electrical stimulation always induced functional connectivity changes, although uncontrolled. The magnitude of change increased when we applied the adaptive (closed-loop) training protocol. We hypothesize that networks develop an equilibrium between connectivity and activity. Induced connectivity changes depend on the combination of applied stimulus and initial connectivity. Plain stimuli may drive networks to the nearest equilibrium that accommodates this input, whereas adaptive stimulation may direct the space for exploration and force networks to a new balance, at a larger distance from the initial state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.