To address data management and data exchange problems in the nuclear magnetic resonance (NMR) community, the Collaborative Computing Project for the NMR community (CCPN) created a "Data Model" that describes all the different types of information needed in an NMR structural study, from molecular structure and NMR parameters to coordinates. This paper describes the development of a set of software applications that use the Data Model and its associated libraries, thus validating the approach. These applications are freely available and provide a pipeline for high-throughput analysis of NMR data. Three programs work directly with the Data Model: CcpNmr Analysis, an entirely new analysis and interactive display program, the CcpNmr FormatConverter, which allows transfer of data from programs commonly used in NMR to and from the Data Model, and the CLOUDS software for automated structure calculation and assignment (Carnegie Mellon University), which was rewritten to interact directly with the Data Model. The ARIA 2.0 software for structure calculation (Institut Pasteur) and the QUEEN program for validation of restraints (University of Nijmegen) were extended to provide conversion of their data to the Data Model. During these developments the Data Model has been thoroughly tested and used, demonstrating that applications can successfully exchange data via the Data Model. The software architecture developed by CCPN is now ready for new developments, such as integration with additional software applications and extensions of the Data Model into other areas of research.
BackgroundACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype.FindingsWe verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein–ligand complexes from the PDB.ConclusionsACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications.
One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aβ peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.