In molecular photochemistry, charge-transfer emission is well understood and widely exploited. In contrast, luminescent metal-centered transitions only came into focus in recent years. This gave rise to strongly phosphorescent CrIII complexes with a d3 electronic configuration featuring luminescent metal-centered excited states which are characterized by the flip of a single spin. These so-called spin-flip emitters possess unique properties and require different design strategies than traditional charge-transfer phosphors. In this review, we give a brief introduction to ligand field theory as a framework to understand this phenomenon and outline prerequisites for efficient spin-flip emission including ligand field strength, symmetry, intersystem crossing and common deactivation pathways using CrIII complexes as instructive examples. The recent progress and associated challenges of tuning the energies of emissive excited states and of emerging applications of the unique photophysical properties of spin-flip emitters are discussed. Finally, we summarize the current state-of-the-art and challenges of spin-flip emitters beyond CrIII with d2, d3, d4 and d8 electronic configuration, where we mainly cover pseudooctahedral molecular complexes of V, Mo, W, Mn, Re and Ni, and highlight possible future research opportunities.
Graphical abstract
The chiral spin–flip luminophore [Cr(ddpd)2]3+ can be resolved into enantiopure material by chiral HPLC. The pure enantiomers display strong CPL activity for the corresponding near-IR phosphorescence.
Sensitized triplet‐triplet annihilation upconversion (sTTA‐UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first‐row transition metals are only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2]3+ (bpmp=2,6‐bis(2‐pyridylmethyl)pyridine) containing earth‐abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10‐diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet‐triplet energy transfer from excited [Cr(bpmp)2]3+ to DPA gives 3DPA with close‐to‐unity quantum yield. TTA of 3DPA furnishes green‐to‐blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less‐hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2]3+ and green light.
The discovery of the highly NIR-luminescent Molecular Ruby [Cr(ddpd)2]3+ 13+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) has been a milestone in the development of earth-abundant luminophors and has led to important new impulses...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.