Background: Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results: Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions: This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Background: Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results: Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts.Conclusions: This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.