Despite advancements in cartography, mapping is still a costly process which involves a substantial amount of manual work. This paper presents a method to automatically derive road attributes by analyzing and mining movement trajectories (e.g. GPS tracks). We have investigated the automatic extraction of eight road attributes: directionality, speed limit, number of lanes, access, average speed, congestion, importance, and geometric offset; and we have developed a supervised classification method (decision tree) to infer them. The extraction of most of these attributes has not been investigated previously.We have implemented our method in a software prototype and we automatically update the OpenStreetMap (OSM) dataset of the Netherlands, increasing its level of completeness.The validation of the classification shows variable levels of accuracy, e.g. whether a road is a oneway or a two-way road is classified with an accuracy of 99%, and the accuracy for the speed limit is 69%. When taking into account speed limits that are one step away (e.g. 60 km/h instead of the classified 50 km/h) the classification increases to 95%, which might be acceptable in some use-cases. We mitigate this with a hierarchical code list of attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.