The purpose of this research was to determine the effect of composite fish gelatin–chitosan edible coatings enriched with black tea extract on the physical, chemical, and fungal decay properties of minimally processed watermelons stored at ±4 °C for 13 days. In this study, tuna skin gelatin was extracted and used to prepare edible coating solutions which comprised 4% gelatin, 2% chitosan, 2% calcium lactate, 2% glycerol, and black tea extract (0%; 0.25%; 0.50%; 0.75%; 1%). The samples were coated using the layer-by-layer dipping technique. This study showed that composite fish gelatin–chitosan edible coating enriched with black tea extract maintained and improved weight loss, texture (hardness), color, pH, and total soluble solid antioxidant activity and prevented fungal decay on minimally processed watermelons stored at ±4 °C for 13 days. The development in this study of edible film and a coating prepared from fish gelatin–chitosan and the incorporation of black tea extract as an antioxidant or antimicrobial agent can be a new approach to preventing postharvest loss and increasing the shelf life of minimally processed watermelon.
Red chili is a climacteric fruit that still undergoes respiration after harvest. During storage, it is susceptible to mechanical, physical, and physiological damage and decay incidence, therefore a method is needed to protect it so that the quality losses can be minimized. One way this can be achieved is by applying edible coatings that can be made from hydrocolloids, lipids, or composites of both, in addition to antimicrobial agents that can also be added to inhibit microbial growth. In this study, we detail the application of an edible coating made of gelatin composite from tilapia fish skin, which has a transparent color and good barrier properties against O2, CO2, and lipids. To increase its physicochemical and functional qualities, it must be modified by adding composite elements such as pectin as well as hydrophobic ingredients such as garlic essential oil. This study was conducted to determine the effect of a gelatin–pectin composite edible coating (75:25, 50:50, 25:75), which was incorporated with garlic essential oil (2% and 3%) on the physicochemical properties of red chili at room temperature (±29 °C), RH ± 69%) for 14 days. The best treatment was the 50–50% pectin–gelatin composite, which was incorporated with garlic essential oil with a concentration of 2 and 3%. This treatment provided a protective effect against changes in several physicochemical properties: inhibiting weight loss of 36.36 and 37.03%, softening of texture by 0.547 and 0.539 kg/84 mm2, maintaining acidity of 0.0087 and 0.0081%, maintaining vitamin C content of 2.237 and 2.349 mg/gr, anti-oxidant activity (IC50) 546.587 and 524.907; it also provided a protective effect on chili colors changing to red, and retains better total dissolved solid values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.